期刊文献+

基于轻量级密集神经网络的车载自组网入侵检测方法 被引量:1

Intrusion detection method for VANET based on light dense neural network
下载PDF
导出
摘要 在车载自组网中,攻击者可以通过伪造、篡改消息等方式发布虚假交通信息,导致交通拥堵甚至是严重的交通事故,而传统的入侵检测方法不能满足车载自组网的应用需求。为了解决现阶段车载网中入侵检测方法性能低且存储与时间成本高的问题,提出了一种基于密集神经网络的入侵检测方法L-DenseNet(Light Dense Neural Network),通过降低模型复杂性,提升算法训练速度和部署适应性,使其更适用于车载自组网中的入侵检测。在VeReMi数据集上进行对比实验,结果表明,该方法在识别各类攻击的精确率和召回率的综合表现最好,且具有较少的时间成本和存储开销。 In the vehicular ad-hoc network,attackers can publish false traffic information by forging or tampering with messages,etc.,resulting in traffic congestion or even serious traffic accidents.However,traditional intrusion detection methods cannot meet the application requirements of vehicular ad-hoc network.In order to solve the problems such as low performance,instability and high storage and time cost of intrusion detection methods in the current vehicular ad-hoc network,this paper proposes an intrusion detection method L-DenseNet(Light Dense Neural Network)based on dense neural network.The L-DenseNet is proposed to reduce the complexity of the model and improve the training speed and deployment adaptability of the detection algorithm.The proposed method is more suitable for intrusion detection in vehicle ad hoc networks.This paper conducts comparative experiments on the VeReMi dataset.The results show that the method proposed has the best overall performance in identifying various types of attacks in terms of precision and recall.As the same time,this method has less time cost and storage overhead.
作者 黄学臻 翟翟 周琳 祝雅茹 Huang Xuezhen;Zhai Di;Zhou Lin;Zhu Yaru(The First Research Institution of Ministry of Public Security of PRC,Beijing 100044,China;Security and Privacy in Intelligent Transportation,Beijing Jiaotong University,Beijing 100044,China)
出处 《电子技术应用》 2022年第7期67-73,共7页 Application of Electronic Technique
基金 国家重点研发计划(2020YFB2103800)。
关键词 车载自组网 密集神经网络 入侵检测 深度学习 vehicular ad-hoc network dense neural network intrusion detection deep learning
  • 相关文献

参考文献3

二级参考文献25

  • 1常促宇,向勇,史美林.车载自组网的现状与发展[J].通信学报,2007,28(11):116-126. 被引量:191
  • 2HUANG Zhen. On reputation and data-centric misbeha-bior detection mechanisms for VANETs[D].Canada:U-niversity of Ottawa,2011.6-7.
  • 3GOLLE P,GREENE D,STADDON J. Detecting and correcting malicious data in VANETs[A].Philadelphia,PA,USA:ACM,2004.29-37.
  • 4VULIMIRI A,GUPTA A,ROY P. Application of secondary information for misbehavior detection in VANETs[J].Networking,2010,(06):385-396.
  • 5RUJ S,CAVENAGHI M A,HUANG Z. On data-centric misbehavior detection in VANETs[A].San Francisco,CA,USA:the IEEE,2011.1-5.
  • 6RAYA M,PAPADIMITRATOS P,AAD I. Evic-tion of misbehaving and faulty nodes in vehicular net-works[J].IEEE Journal on Selected Areas in Communi-cations,2007,(08):1557-1568.
  • 7ANDERSON J P. Computer security threat monitoring and surveillance[R].Pennsylvania:James P Anderson Company,1980.17.
  • 8SPAFFORD E H. Crisis and aftermath[J].Communica-tions of the ACM,1989,(06):678-687.
  • 9ALLEN J,CHRISTIE A,FITHEN W. State of the practice of intrusion detection technologies[R].Pittsburgh,PA:Software Engineering Institute,Carnegie Mellon University,2000.
  • 10FAROOQI A H,KHAN F A. A survey of intrusion de-tection systems for wireless sensor networks[J].Interna-tional Journal of Ad Hoc and Ubiquitous Computing,2012,(02):69-83.

共引文献27

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部