期刊文献+

基于机器学习的电网监控通信网络运行态势感知方法 被引量:1

A Method for Power Grid Monitoring Communication Network Operation Situation Awareness Based on Machine Learning
下载PDF
导出
摘要 针对没有删除电网监控通信网络运行数据的冗余特征,导致感知结果不理想,平均计算时间和迭代次数增加的问题,提出一种基于机器学习的电网监控通信网络运行态势感知方法。通过方差过滤器删除数据集中的冗余及无相关特征,采用决策树递归特征消除算法,过滤电网监控通信网络运行数据,进行特征提取和分类预测,结合具有人工经验的K-means聚类方法,对常态因子添加状态标签,通过误差预测值对态势因子进行误差修正,构建电网监控通信网络运行态势评估模型,实现电网监控通信网络运行态势感知。实例测试结果表明,所提方法能够有效减少平均计算时间和迭代次数,获取更加准确的感知结果。 Aiming at the problem that the redundant features of the operation data of the power grid monitoring communication network are not deleted, which leads to the unsatisfactory sensing results and the increase of the average computing time and the number of iterations, a method of power grid monitoring communication network operation situation awareness based on machine learning is proposed.The redundant and irrelevant features in the data set are deleted by variance filter, and the recursive feature elimination algorithm of decision tree is used to filter the operation data of power grid monitoring communication network.The feature extraction and classification prediction are carried out.Combined with the K-means clustering method with artificial experience, the state label is added to the normal factors, and the error of situation factors is corrected by the error prediction value, The operation situation assessment model of power grid monitoring communication network is constructed to realize the operation situation awareness of power grid monitoring communication network.The experimental results show that the proposed method can effectively reduce the average computing time and the number of iterations, and obtain more accurate sensing results.
作者 孙向聚 郝婷 宋曦 王雪 SUN Xiangju;HAO Ting;SONG Xi;WANG Xue(Information and Communication Company of State Grid Gansu Electric Power Company,Lanzhou 730050,China;State Grid Gansu Electric Power Company,Lanzhou 730050,China)
出处 《工业加热》 CAS 2022年第6期68-72,共5页 Industrial Heating
关键词 机器学习 电网监控 通信网络 运行态势感知 machine learning power grid monitoring communication network operational situation awareness
  • 相关文献

参考文献15

二级参考文献130

  • 1王洪礼,沈菲,冯剑丰,孙景.基于人工神经网络的浮游植物密度预测模型研究[J].气象水文海洋仪器,2004,21(3):26-29. 被引量:2
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3李霞.基于主客观决策信息一致化的组合赋权法[J].企业技术开发,2007,26(6):78-79. 被引量:6
  • 4MITCHELL T M. Machine Learning. New York, USA: McGraw- Hill Science, 1997.
  • 5QUINLAN J R. Induction of Decision Trees. Machine Learning, 1986, 1(1): 81-106.
  • 6WU X D, KUMAR V, QUINLAN J R, et al. Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 2008, 14( 1 ) : 1-37.
  • 7BREIMAN L, FRIEDMAN J H, STONE C J, et al. Classification and Regression Trees. Monterey, USA: Chapman and Hall, 1984.
  • 8WANG X Z, YEUNG D S, TSANG E C. A Comparative Study on Heuristic Algorithms for Generating Fuzzy Decision Trees. IEEE Trans on Systems, Man, and Cybernetics ( Cybernetics ), 2001, 31(2) : 215-226.
  • 9HU Q H, GUO M Z, YU D R, et al. Information Entropy for Ordi- nal Classification. Science China( Information Sciences), 2010, 53 (6) : 1158-1200.
  • 10HU Q H, CHE X J, ZHANG L, et al. Rank Entropy-Based Deci- sion Trees for Monotonic Classification. IEEE Trans on Knowledge and Data Engineering, 2012, 24( 11 ) : 2052-2064.

共引文献229

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部