期刊文献+

参数可变强非局域非线性介质中球贝塞尔孤立波

Spherical Bessel Solitary Waves in Strongly Non-local Nonlinear Media with Variable Parameters
下载PDF
导出
摘要 研究了具有参数可变强非局域非线性效应的玻色-爱因斯坦凝聚中物质波的演化。首次获得参数可变系统中三维强非局域Gross-Pitaevskii方程的解析解即自相似球贝塞尔孤立波解。存在于强非局域非线性相互作用能的BEC中的物质波强度即粒子数密度的径向呈球贝塞尔函数分布,角向呈球谐函数分布,且波强随自相似变量的变化关系不随演化时间而改变。物质波具有线性相位和空间啁啾。 The evolution of matter waves in Bose-Einstein condensations with both strong non-local nonlinear effects and variable parameters is studied. For the first time, the self-similar spherical Bessel solitary wave solution of the three-dimensional strongly non-local Gross-Pitaevskii equation with variable parameters is obtained. The intensity of matter wave existing in the BEC with strong non-local nonlinear interaction energy, namely the particle number density, is distributed in the radial direction as a spherical Bessel function, and in the angular direction as a spherical harmonic function. The wave intensity varies with self-similar variables, however,does not change with evolution time. Such a matter wave has linear phase and spatial chirp.
作者 梁检初 万凯 刘佟 强娜 李雅洁 徐四六 LIANG Jianchu;WAN Kai;LIU Tong;QIANG Na;LI Yajie;XU Siliu(School of Electronic Information and Electrical Engineering,Huizhou University,Huizhou 516007,Guangdong,China;Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices,Huizhou University,Huizhou 516007,Guangdong China;Hubei University of Science and Technology,Xianning 437100,Hubei,China)
出处 《惠州学院学报》 2022年第3期63-69,共7页 Journal of Huizhou University
基金 国家自然科学基金(61372064,62103159) 广东省基础与应用基础研究基金项目(2021A1515010282,2114050002323) 惠州市科技计划项目(2020SD0406034)。
关键词 强非局域 参数可变 孤立波 自相似 strongly non-local variable coefficients solitary wave self-similar
  • 相关文献

参考文献1

二级参考文献34

  • 1C.Q. Dai, S.Q. Zhu, and J.F. Zhang, Opt. Lett. 35 (2010) 1437.
  • 2Y.X. Chen and X.H. Lu, Commun. Theor. Phys. 55 (2011) 871.
  • 3Y.Y. Wang, J.D. He, and C.Q. Dai, Opt. Commun. 284 (2011) 2022.
  • 4J.C. Liang, H. Liu, F. Liu, and L. Yi, J. Phys. A: Math. Theor. 42 (2009) 335204.
  • 5S.L. Xu, J.C. Liang, and L. Yi, Commun. Theor. Phys. 53 (2010) 159.
  • 6H.Y. Wu, J.X. Fei, and C.L. Zheng, Commun. Theor. Phys. 54 (2010) 55.
  • 7Y.Y. Wang, J.D. He, and C.Q. Dai, Opt. Commun. 284 (2011) 4738.
  • 8A.D. Martin, C.S. Adams, and S.A. Gardiner, Phys. Rev. Lett. 98 (2007) 020402.
  • 9W.P. Zhong, L. Yi, R.H. Xie, et al., Phys. Rev. A 78 (2008) 023821.
  • 10C.Q. Dai, S.Q. Zhu, L.L. Wang, and J.F. Zhang, Euro- Phys. Lett. 92 (2010) 24005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部