摘要
研究了具有参数可变强非局域非线性效应的玻色-爱因斯坦凝聚中物质波的演化。首次获得参数可变系统中三维强非局域Gross-Pitaevskii方程的解析解即自相似球贝塞尔孤立波解。存在于强非局域非线性相互作用能的BEC中的物质波强度即粒子数密度的径向呈球贝塞尔函数分布,角向呈球谐函数分布,且波强随自相似变量的变化关系不随演化时间而改变。物质波具有线性相位和空间啁啾。
The evolution of matter waves in Bose-Einstein condensations with both strong non-local nonlinear effects and variable parameters is studied. For the first time, the self-similar spherical Bessel solitary wave solution of the three-dimensional strongly non-local Gross-Pitaevskii equation with variable parameters is obtained. The intensity of matter wave existing in the BEC with strong non-local nonlinear interaction energy, namely the particle number density, is distributed in the radial direction as a spherical Bessel function, and in the angular direction as a spherical harmonic function. The wave intensity varies with self-similar variables, however,does not change with evolution time. Such a matter wave has linear phase and spatial chirp.
作者
梁检初
万凯
刘佟
强娜
李雅洁
徐四六
LIANG Jianchu;WAN Kai;LIU Tong;QIANG Na;LI Yajie;XU Siliu(School of Electronic Information and Electrical Engineering,Huizhou University,Huizhou 516007,Guangdong,China;Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices,Huizhou University,Huizhou 516007,Guangdong China;Hubei University of Science and Technology,Xianning 437100,Hubei,China)
出处
《惠州学院学报》
2022年第3期63-69,共7页
Journal of Huizhou University
基金
国家自然科学基金(61372064,62103159)
广东省基础与应用基础研究基金项目(2021A1515010282,2114050002323)
惠州市科技计划项目(2020SD0406034)。
关键词
强非局域
参数可变
孤立波
自相似
strongly non-local
variable coefficients
solitary wave
self-similar