摘要
针对现有图像超分辨率重建方法中高频图像信息不丰富的问题,提出一种基于反馈和注意机制的单图像重建生成对抗网络(GFSRGAN)。采用反馈网络作为生成器,通过反馈连接逐步生成高分辨率图像;提出一种具有注意机制的反馈块,其能在处理反馈流的同时,自适应地选择有用的特征信息;利用相对平均最小二乘GAN(RaLSGAN)损失引导模型获得更真实的图像。实验结果表明,与现有基于GAN的超分辨方法相比,该方法重建出的图像纹理更加逼真自然。
A single-image reconstruction generative adversarial network(GFSRGAN)based on feedback and attention mechanisms was proposed to address the problem that the existing image super-resolution reconstruction methods are not rich in high-frequency image information.A feedback network was used as a generator,which gradually generated high-resolution images through feedback connections.A feedback block with an attention mechanism was proposed,which was able to process the feedback stream while adaptively selecting useful feature information.A more realistic image was obtained using a relative mean least squares GAN(RaLSGAN)loss-guided model.Experimental results show that the reconstructed image texture is more realistic and natural compared with the existing GAN-based super-resolution methods.
作者
王永强
李雪
范迎迎
钱育蓉
WANG Yong-qiang;LI Xue;FAN Ying-ying;QIAN Yu-rong(School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;School of Software,Xinjiang University,Urumqi 830046,China;Key Laboratory of Signal Detection and Processing in Xinjiang,Xinjiang University,Urumqi 830046,China;Key Laboratory of Software Engineering,Xinjiang University,Urumqi 830046,China)
出处
《计算机工程与设计》
北大核心
2022年第7期2022-2030,共9页
Computer Engineering and Design
基金
国家自然科学基金项目(61966035)
自治区研究生创新基金项目(XJ2019G069)
智能多模态信息处理团队基金项目(XJEDU2017T002)
国家自然科学基金联合基金——重点基金项目(U1803261)
自治区科技厅国际合作基金项目(2020E01023)。
关键词
单图像超分辨率重建
反馈机制
生成对抗网络
注意力机制
深度学习
single-image super-resolution reconstruction
feedback mechanism
generative adversarial network
attention mechanism
deep learning