期刊文献+

基于属性分类建模的电子产品价值评估技术

Value evaluation method of electronic products based on attribute classification modeling
下载PDF
导出
摘要 为缓解传统电子产品价值评估方式高度依赖专业人员的干预,需要频繁更新评估算法,人工工作量过大的问题,提出基于属性分类建模的电子产品价值评估方法。通过将产品属性进行分类,分别建模产品属性与价值评估结果的映射关系,引入时间信息来增强预测结果的时效性,采用一种缓解数据驱动模型冷启动问题的方法,获得更加精准的价值评估结果。通过在真实的手机回收订单数据集上进行的实验,验证了该模型在减少人工干预的同时取得了较高的电子产品价值评估精度。 To alleviate the problem that the traditional electronic product value assessment method highly relies on the intervention of professionals,which requires frequent updating the assessment algorithm and leads to excessive manual workload,an electronic product value assessment method based on attribute classification modeling was proposed,which modeled the mapping relationship between product attributes and value assessment results separately by classifying product attributes.Time information was introduced to enhance the timeliness of the prediction results.A method was adopted to alleviate the cold start problem of the data-driven model and more accurate value assessment results were obtained.The model was implemented on a real cell phone recycling order dataset.Results demonstrate that the model achieves high accuracy of electronic product value evaluation with less human intervention.
作者 王陆霖 刘杨 彭治 杜永萍 韩红桂 WANG Lu-lin;LIU Yang;PENG Zhi;DU Yong-ping;HAN Hong-gui(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《计算机工程与设计》 北大核心 2022年第7期2040-2047,共8页 Computer Engineering and Design
基金 国家重点研发计划基金项目(2018YFC1900804)。
关键词 价值评估 电子产品回收 属性分类 神经网络 主成分分析 value evaluation electronics recycling attribute classification neural network principal component analysis
  • 相关文献

参考文献8

二级参考文献72

  • 1LIU Xiao-sheng1, DENG Zhe1, WANG Ting-li2 1. School of Architecture and Survey Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China,2. School of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.Real estate appraisal system based on GIS and BP neural network[J].中国有色金属学会会刊:英文版,2011,21(S3):626-630. 被引量:12
  • 2金龙,吴建生,林开平,陈冰廉.基于遗传算法的神经网络短期气候预测模型[J].高原气象,2005,24(6):981-987. 被引量:40
  • 3储诚山,张宏伟,郭军.基于遗传算法和BP神经网络的用水量预测[J].中国农村水利水电,2006(4):36-38. 被引量:24
  • 4戴葵.神经网络设计[M].北京:机械工业出版社,2002.399-421.
  • 5胡萍,安捷.GENI、FIND和CNGI、高可信网络的关系与发展[J].厦门大学学报(自然科学版),2007,46(A02):41-44. 被引量:3
  • 6Yi Q, Skieewicz J, Dinda P. An empirical study of the multi scale predictability of network traffic[C] //IEEE Internation al Symposium on High Performance Distributed Computing 2004:66-76.
  • 7Alarcon-Aquino V, Barria J A. Multiresolution FIR neural- network-based learning algorithm applied to network traffic prediction[J]. IEEE Transactions on Systems, Man, and Cy- bernetics-Part C: Applications and Reviews, 2006, 36 (2) 208-220.
  • 8Song Ying, Chen Zeng-qiang, Yuan Zhu-zhi. New chaotic PSO- based neural network predictive control for nonlinear process [J]. IEEE Transactions on Neural Networks, 2007,18(2): 595-600.
  • 9Tae J P,Ryu K R. A dual population genetic algorithm with evolving diversity[C]//Proc of IEEE Congress on Evolution- ary Computation, 2007 : 3516- 3522.
  • 10Govindan D, Chakraborty S, Chakraborti N. Analyzing the fluid flow in continuous casting through evolutionary neural nets and multi-objective genetic algorithms[J]. Steel Re search International,2010,81(3) :197-203.

共引文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部