期刊文献+

Receding horizon control for cooperative search of multi-UAVs based on differential evolution 被引量:5

原文传递
导出
摘要 Purpose–The purpose of this paper is to present a hybrid method of intelligent optimization algorithm and Receding Horizon Control.The method is applied to solve the problem of cooperative search of multi-unmanned aerial vehicles(multi-UAVs).Design/methodology/approach–The intelligent optimization of Differential Evolution(DE)makes the complex problem of multi-UAVs cooperative search a regular function optimization problem.To meet the real-time requirement,the idea of Receding Horizon Control is applied.An Extended Search Map based on hormone information is used to describe the uncertain environment information.Findings–Simulation results indicate effectiveness of the hybrid method in solving the problem of cooperative search for multi-UAVs.Originality/value–The paper presents an interesting hybrid method of DE and Receding Horizon Control for the problem of cooperative multi-UAVs.
出处 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第1期145-158,共14页 智能计算与控制论国际期刊(英文)
基金 This work was supported by the Aeronautical Science Foundation of China under Grant no.2010ZC1312 Foundation of Science and Technology on Electron-Optic Control Laboratory.
  • 相关文献

同被引文献64

  • 1龙涛,朱华勇,沈林成.多UCAV协同中基于协商的分布式任务分配研究[J].宇航学报,2006,27(3):457-462. 被引量:31
  • 2ANTHONY J M. Control of cooperative and collaborative team tactics in autonomous unmanned aerial vehicles using decentralized model predictive control [D]. Canada: Royal Military College, 2012.
  • 3Department of Defense (DOD). Unmanned Systems Integrated Road- map FY2013-2038 [Z]. Department of Defense: Office of the Secretary of Defense Unmanned Systems Roadmap, USA. Washington, 2013.
  • 4CONNIE N K, HUGH H T. Dynamic mapping of forest fire fronts using multiple unmanned aerial vehicles [ C ]//AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada: AIAA, 2010: 1-19.
  • 5DUSTIN M G. A Decentralized Cooperative Control Framework for Multiple UAVs [ D]. Morgantown, West Virginia: West Virginia University, 2007.
  • 6VANDERMEERSCH B R R, CHU Q P, MLDER J A, et al. Design and implementation of a mission planner for multiple UCAVs in a SEAD mission [C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA, 2005,6480:1-10.
  • 7PLAMEN A. Sense and avoid in UAS research and applications[M]. Hoboken, New Jersey, USA: John Wiley and Sons, Inc, 2012.
  • 8NAGARAJAN R, SOLAIRAJU A. Computing improved fuzzy optimal Hungarian assignment problems with fuzzy costs under robust ranking techniques[J]. Computing, 2010, 6(4):6-13.
  • 9ALIGHANBARI M, HOW J P. Cooperative task assignment of anmanned aerial vehicles in adversarial environments [C]//American Control Conference, 2005. Proceedings of the 2005. Portland, Oregon : IEEE, 2005: 4661-4666.
  • 10JEONG B M, HA J S, CHOI H L. MDP-based mission planning for multi-UAV persistent surveillance [C]//Control, Automation and Systems (ICCAS), 2014 14th International Conference on. Korea: IEEE, 2014: 831-834.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部