期刊文献+

地面颤振试验系统气动插值点优化配置方法研究 被引量:1

Sensor and shaker locations optimization of the ground flutter test system
下载PDF
导出
摘要 地面颤振试验(ground flutter test,GFT)系统采用少量激振器模拟连续分布气动力,为实现气动插值点的缩聚,推导了地面颤振试验系统的控制方程,对比了GFT系统和原颤振系统控制方程在广义力项区别,定义了激/测振点位置优化的目标函数;为了提高插值精度,充分利用结构振动已知信息,提出了虚拟激/测振点技术;采用分群粒子群算法兼顾局部寻优和全局寻优,搭建优化流程,对插值点进行优化配置。基于平板机翼开展了GFT系统激/测振点位置优化计算,构建了地面集中气动力并进行了颤振特性测试试验。试验结果表明,本研究提出的方法精度较高,满足地面颤振试验的需求。 The ground flutter test(GFT)system is the testing equipment which simulates the continuously distributed aerodynamic force with a small number of shakers.To realize the polycondensation of aerodynamic-force interpolating point,the GFT’s control equation is derived and the generalized-aerodynamic-force difference between the GFT system and the original flutter system is showed.Based on the equivalence of generalized aerodynamic force,the objective function about sensor and shaker locations optimization is defined.The method proposed to improve the interpolation accuracy of the mode of vibration is named virtual sensor-shaker technology.Multi-Swarm Particle Swarm Optimization Algorithm(MSPSO)is used to establish the optimization process,which has a good performance to moderate the contradiction of global searching ability and local searching ability.The GFT about a plate wing case was carried out,in which the sensor and shaker locations were optimized with the method proposed in this paper.The test results verified that the accuracy of the optimization method is high enough for the GFT.
作者 黎伟明 宋巧治 刘继军 LI Weiming;SONG Qiaozhi;LIU Jijun(The Second Department,Aircraft Strength Research Institute of China,710065 Xi'an,China)
出处 《应用力学学报》 CAS CSCD 北大核心 2022年第3期445-451,共7页 Chinese Journal of Applied Mechanics
基金 工业和信息化部民用飞机专项科研资助项目(No.MJ-2017-F15)。
关键词 气动弹性 地面颤振试验 广义气动力 激振点 优化方法 aeroelasticity ground flutter test generalized aerodynamic force shaker point optimization algorithm
  • 相关文献

参考文献3

二级参考文献27

  • 1屈百达,夏怡.基于混合灵敏度永磁同步电机伺服系统H∞鲁棒控制[J].电机与控制应用,2006,33(4):30-33. 被引量:5
  • 2Chen G B, Zou C Q, Yang C. Aeroelastic Design Foundation (in Chinese). Beijing: Beijing University of Aeronautics and Astro- nautics Press, 2004. 194-197.
  • 3Yang C, Wu Z G. Aeroservoelastic stability of missile (in Chinese). Flight Dynam, 2000, 18:1-5.
  • 4Wu Z G, Yang C. Aeroelastic problems and methodology of slender missiles (in Chinese). In: The 9th National Aeroelasticity Conference. Chengdu: Chinese Aerody-namics Research Society, 2005. 102-110.
  • 5Kraft E, Chapman G. A critical review of the integration of computa- tions, ground tests, and flight test for the development of hypersonic vehicles. AIAA-93-5101, 1993.
  • 6Miller C G. Hypersonic aerodynamic/aerothermodynamic testing ca- pabilities at Langley research center. AIAA-92-3937, 1992.
  • 7Marion L L, Dennis M B. A national study for hypersonic facility development. AIAA-94-2473, 1994.
  • 8Norman E S. Future requirements for aerodynamic and aerothermo- dynamic facilities. AIAA-92-3903, 1992.
  • 9Trimmer L L, Aubrey C J, Robert L V. The optimum hypersonic wind tunnel. AIAA-86-0739CP, 1986.
  • 10Guan D. Aeroelastic Handbook of Aircraft (in Chinese). Beijing: Aeronautic Industry Press, 1994. 126-128.

共引文献27

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部