期刊文献+

A Compact Difference Scheme on Graded Meshes for the Nonlinear Fractional Integro-differential Equation with Non-smooth Solutions

原文传递
导出
摘要 In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第3期601-613,共13页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.11701103,11801095) Young Top-notch Talent Program of Guangdong Province(No.2017GC010379) Natural Science Foundation of Guangdong Province(No.2022A1515012147,2019A1515010876,2017A030310538) the Project of Science and Technology of Guangzhou(No.201904010341,202102020704) the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(2021023)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部