期刊文献+

融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型 被引量:3

Fusion depth separable small convolution kernel and CBAM improved CNN fault diagnosis model
下载PDF
导出
摘要 为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小卷积层代替池化层,实现池化层的降采样功能。其次,在最后一层池化层引入CBAM,对时频图像所表征的故障特征给予更多的关注,以提高模型计算效率。再次,使用全局平均池化代替传统全连接层,进一步减少模型参数数量。最后,利用CWRU轴承振动数据和自制实验平台数据验证所提方法在滚动轴承故障诊断方面的有效性和可行性。实验结果表明,融合深度可分离小卷积核和CBAM改进的CNN模型有效减少了模型需要的训练参数和计算量,且在识别准确率方面取得了更优的性能。 In order to solve the problem of maximum pooling loss of information and average pooling fuzzy features, improve the time-frequency image recognition efficiency of the model and reduce the model complexity, A CNN network model using a deep detachable small convolutional kernel for down-sampling and CBAM is proposed for fault diagnosis of bearings. Firstly, in the pooling layer except the last layer, the depth separable small convolution layer is used to replace the pooling layer to realize the down-sampling function of the pooling layer. Secondly, CBAM is introduced in the last pooling layer to pay more attention to the fault features represented by time-frequency images to improve the computational efficiency of the model. Thirdly, global average pooling is used instead of traditional full connection layer to further reduce the number of model parameters. Finally, CWRU bearing vibration data and self-made experimental platform data were used to verify the validity and feasibility of the proposed method in rolling bearing fault diagnosis. Experimental results show that the fusion depth separable small convolution kernel and CBAM improved CNN model can effectively reduce the training parameters and computation required by the model, and achieve better performance in recognition accuracy.
作者 于洋 马军 王晓东 朱江艳 刘桂敏 Yu Yang;Ma Jun;Wang Xiaodong;Zhu Jiangyan;Liu Guimin(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电子测量技术》 北大核心 2022年第6期171-178,共8页 Electronic Measurement Technology
基金 国家自然科学基金(51765002,61663017) 云南省科技计划项目(2019FD042)资助。
关键词 深度可分离小卷积 CBAM 卷积神经网络 滚动轴承 deeply separable small convolution CBAM convolutional neural network rolling bearing
  • 相关文献

参考文献20

二级参考文献149

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:85
  • 2陈良,高成敏.快速离散化双线性插值算法[J].计算机工程与设计,2007,28(15):3787-3790. 被引量:24
  • 3GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 4HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 6BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 7WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 8BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 9ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 10VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.

共引文献1348

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部