摘要
太赫兹(THz)无损检测技术具有非破坏性、非电离和非接触的优点,在航空航天领域纤维增强复合材料无损检测中得到了较快的发展和应用。在碳纤维复合材料层合板的4个不同深度(0.225、0.450、0.675、0.900 mm)插入聚四氟乙烯作为人工缺陷,采用太赫兹时域光谱和成像系统对其进行成像和光谱分析,探讨太赫兹波辐射下缺陷的成像效果和光谱特性。研究结果发现,在0.25~2.0 THz频率范围内,太赫兹反射成像可以成功检测出碳纤维复合材料中不同深度缺陷:随着缺陷深度的增加,太赫兹频域成像信号和光谱信号随缺陷深度线性增大,吸收系数成像信号和光谱信号随缺陷深度线性减小;随着频率的增加,缺陷的功率谱密度先增大后减小,吸收系数缓慢增大。该结果可以为碳纤维复合材料缺陷深度的可视化和定量化分析提供参考依据。
Terahertz(THz) non-destructive testing technology has the advantages of non-destructive, non-ionizing and non-contact, and has been rapidly developed and applied in the non-destructive testing of fiber-reinforced composite materials in the aeronautics and astronautics field. PTFE was inserted into 4 different depths(0.225, 0.450, 0.675, 0.900 mm) of carbon fiber composite laminates as artificial defects, and the terahertz time-domain spectroscopy and imaging system was used to image and spectrally analyze it, discuss the imaging effects and spectral properties of defects under terahertz radiation. The results of the study show that in the frequency band of 0.25~2.0 THz, terahertz reflection imaging can successfully detect different depths defects in carbon fiber composites, the terahertz frequency imaging signal and spectral signal linear increased with the defect depth increment, the absorption coefficient imaging signal and spectral signal linear decreased with the defect depth increment, and with the increase of frequency, the power spectral density of the defect firstly increment and then decrement, and the absorption coefficient slowly increases. The results can provide a reference for the visualization and quantitative analysis of unknown depth defects in carbon fiber composites.
作者
徐亚军
向红星
钟勉
杨文锋
刘炳伟
魏东山
李辰
Xu Yajun;Xiang Hongxing;Zhong Mian;Yang Wenfeng;Liu Bingwei;Wei Dongshan;Li Chen(Institute of Electronic and Electrical Engineering,Civil Aviation Flight University of China,Guanghan 618307,China;Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Dongguan University of Technology,Dongguan 523808,China;Shenzhen Institute of Terahertz Technology and Innovation,Shenzhen 518110,China)
出处
《电子测量技术》
北大核心
2022年第8期58-63,共6页
Electronic Measurement Technology
基金
四川省科技厅重点研发项目(2021YFSY0025)
中国民用航空飞行学院面上项目(J2020-49)
四川省大学生创新创业训练计划项目(S202110624128)资助。