期刊文献+

基于特征加权KNN的非侵入式负荷识别方法 被引量:5

Non-intrusive load identification method based on feature weighted KNN
下载PDF
导出
摘要 针对不同稳态特征对识别结果的影响程度不同,并考虑到不平衡数据集造成的少数类误判的问题,提出一种基于特征加权KNN的非侵入式负荷识别方法。首先,采用熵权法计算特征权重,利用特征权重改进特征距离的计算。其次,根据样本数量和对应算法k值计算得到表决权重,带入投票表决过程中,以此来增加少数类的分类准确性。实验结果表明,针对实测负荷数据集时,本文算法的平均识别准确率为93.4%,与KNN算法相比提高了2.8%;针对公开数据集时,本文算法的平均准确率和F1得分分别为86.8%和81.6%,要优于其他4种分类算法。 In view of the different influence of different steady-state features on the identification results, and considering the misjudgment of minority classes caused by unbalanced data sets, a non-invasive load identification method based on feature weighted KNN is proposed. Firstly, the feature weight is calculated by entropy weight method, and it is used to improved feature distance calculation. Secondly, the voting weight is calculated according to the number of samples and the k value of algorithm, which is brought into the voting process to increase the classification accuracy of minority classes. The experimental results show that the average recognition accuracy of algorithm in this paper is 93.4%, which is 2.8% higher than that of KNN algorithm. For public data sets, the average accuracy and F1 score of algorithm in this paper are 86.8% and 81.6%, which are better than the other four classification algorithms.
作者 朱浩 曹宁 鹿浩 张正基 柯炜 Zhu Hao;Cao Ning;Lu Hao;Zhang Zhengji;Ke Wei(School of Computer and Information,Hohai University,Nanjing 211100,China;Jiangsu Yeli Technology Co.,Ltd.,Nanjing 210061,China)
出处 《电子测量技术》 北大核心 2022年第8期70-75,共6页 Electronic Measurement Technology
关键词 非侵入式 负荷识别 稳态特征 KNN 特征权重 表决权重 non intrusive load identification steady characteristics KNN voting weight feature weight
  • 相关文献

参考文献10

二级参考文献86

共引文献263

同被引文献61

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部