期刊文献+

人工蜂群聚类的多媒体网络舆情数据挖掘 被引量:1

Study on Multimedia Network Public Opinion Data Mining Based on Artificial Bee Colony Clustering
原文传递
导出
摘要 阐述多媒体网络舆情数据分布的图谱结构模型,采用人工蜂群轨迹图谱特征分析方法,构建多媒体网络舆情数据的循环查询模型,通过关键词查询和模式查询方法,进行多媒体网络舆情数据的人工蜂群聚类分析,结合数据存储结构分析和联合参数特征分析方法,进行多媒体网络舆情数据图谱参数融合和聚类,实现多媒体网络舆情数据挖掘。仿真结果表明,采用该方法进行多媒体网络舆情数据的精度较高,图谱辨识能力较好。 This paper expounds the map structure model of multimedia network public opinion data distribution, constructs the circular query model of multimedia network public opinion data by using the artificial bee colony trajectory map feature analysis method, carries out the artificial bee colony cluster analysis of multimedia network public opinion data through keyword query and pattern query methods, and combines the data storage structure analysis and joint parameter feature analysis method, Carry out parameter fusion and clustering of multimedia network public opinion data atlas to realize multimedia network public opinion data mining. The simulation results show that this method has high accuracy and good spectrum identification ability for multimedia network public opinion data.
作者 陈先在 CHEN Xianzai(Safety Technology Training Center of Datong Coal Vocational and Technical College,Shanxi 037000,China.)
出处 《电子技术(上海)》 2022年第4期236-237,共2页 Electronic Technology
关键词 人工蜂群 聚类 多媒体网络 舆情数据 数据挖掘 artificial bee colony clustering multimedia network public opinion data data mining
  • 相关文献

参考文献6

二级参考文献65

  • 1张锋,许云,侯艳,樊孝忠.基于互信息的中文术语抽取系统[J].计算机应用研究,2005,22(5):72-73. 被引量:36
  • 2何婷婷,张勇.基于质子串分解的中文术语自动抽取[J].计算机工程,2006,32(23):188-190. 被引量:21
  • 3Intel Corporation. Intel 64 and IA-32 architectures software developer's manual[ EB/OL]. [2013-10-10]. http://www, intel. com/Assets/PDF/manual/252046, pdf.
  • 4Intel Corportation. Legal disclaimer & optimization notice[ EB/OL]. [2013-10-10]. https://gcc, gnu. org/wiki/cauldron2014? action = AttaehFile&do = get&target = Canldran14_AVX-512 Vector_ISA_ Kifill_Yukhin_20140711. pdf.
  • 5STEWART J. An investigation of SIMD instruction sets [ D]. Mel- bourne: University of Ballarat, 2005.
  • 6ALLEN R, KENNEDY K. Optimizing compilers fur modern archi- tectures: a dependence-based approach[ M]. San Francisco: Mor- gan Kaufmann, 2002.
  • 7LARSEN S, AMARASINGHE S. Exploiting superword level paral- lelism with multimedia instruction sets[ C]// PLDI 2000: Proceed- ings of the ACM SIGPLAN 2000 Conference on Programming Lan- guage Design and Implementation. New York: ACM Press, 2000: 145 - 156.
  • 8KIM T, HOSKOTE Y. Automatic generation of custom SIMD in- structions for superword level parallelism[ C]// Proceedings of the 2014 Design, Automation and Test in Europe Conference and Exhi- bition. Piscataway: IEEE Press, 2014:1-6.
  • 9LIU P, ZHAO R, GAO W, et al. A new algorithm to exploit super- word level parallelism[ C] // Proceedings of the 2013 IEEE llth In- ternational Conference on Dependable, Autonomic and Secure Com- puting. Piscataway: IEEE Press, 2013: 521 - 527.
  • 10PRIETO M, PINUEL L, CATrHOOR F, et al. Improving super- word level parallelism support in modern compilers[ C]// CODES + ISSS 2005: Proceedings of the Third IEEE/ACM/IFIP Interna- tional Conference on Hardware/Software Codesign and System Syn- thesis. Piscataway: IEEE Press, 2005:303-308.

共引文献87

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部