摘要
为解决航位推算(PDR)算法累积误差过大并且长航时航向发散的问题,提出了一种基于UWB/PDR自适应扩展卡尔曼滤波(EKF)融合算法。该算法通过UWB定位值和PDR实时解算位置得到自适应校准因子,通过在常规的EKF算法的基础上增加自适应校准因子动态调整UWB观测值的权重来校准位置误差。并用UWB的实时测距对PDR的航向发散进行周期性修正。实验结果表明,自适应EKF融合算法相较于纯PDR航向发散误差降低了63.9%,相较于标准EKF融合算法发散误差降低了31.1%,同时定位百米误差降至0.33 m。
To solve the problem of excessive cumulative error and long heading divergence in the position projection(PDR)algorithm,an adaptive extended Kalman filter(EKF)fusion algorithm based on UWB/PDR is proposed.The adaptive calibration factor can be achieved from the UWB positioning value and the PDR real-time position solution,and the position error is calibrated by dynamically adjusting the weight of the UWB observation with the adaptive calibration factor based on the conventional EKF algorithm.And the real-time ranging of the UWB is used to periodically correct the heading divergence of the PDR.The experimental results show the heading dispersion error is reduced by 63.9%with the adaptive EKF fusion algorithm compared to the pure PDR and 31.1%compared to the general EKF fusion algorithm,Moreover,the positioning 100 m error is reduced to 0.33 m.
作者
刘宇
谢宇
彭慧
邹新海
李汪润
赵博隆
Liu Yu;Xie Yu;Peng Hui;Zou Xinhai;Li Wangrun;Zhao Bolong(Autonomous Navigation and Microsystem Chongqing Key Laboratory,Chongqing University of Post and Telecommunications,Chongqing 400065,China;Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem,Chongqing University of Post and Telecommunications,Chongqing 400065,China)
出处
《电子测量技术》
北大核心
2022年第3期98-103,共6页
Electronic Measurement Technology
基金
国家自然科学基金(61901069)
重庆市教委基础研究项目(KJQN202000605)资助。
关键词
航向发散
航迹推算
自适应扩展卡尔曼
自适应校准因子
directional dispersion
track projection
adaptive extended Kalman
adaptive calibration coefficients