期刊文献+

London磁场的物理机制研究

Physical mechanism of London moment
下载PDF
导出
摘要 超导体在旋转过程中会在其内部产生磁场,称为London磁场.目前,包括London理论和G-L理论在内的多种理论都对London磁场的产生机理进行了解释.从本质上,这些理论解释大多认为旋转超导体最外层超导电子运动滞后并由此出现净余电流,而London磁场则是由旋转超导体表面的净余电流产生的.然而,关于旋转超导体最外层超导电子运动滞后的原因,目前仍没有明确的理论解释.本文通过对旋转系中带电粒子,以及旋转超导体中超导电子的贝里相位进行了理论分析,结果表明旋转状态下超导电子的贝里曲率与London磁场具有相同的表达形式,表明London磁场可视为A-B效应的逆效应,也即基于贝里相位的一种宏观量子效应. The superconductor will generate a magnetic field inside the superconductor during its rotation,which is called the London moment.At present,a variety of theories including London theory and G-L theory have explained the generation mechanism of London moment.Most of these theories essentially believe that the superconducting electrons in the surface layer of the rotating superconductor lag behind and have a net residual current.The London moment is produced by the net residual current on the surface of the rotating superconductor.However,there is still no clear theoretical explanation for the motion lag of the outermost superconducting electrons in rotating superconductors.In this paper the charged particles in the rotating system and the Berry phase of the superconductor in the rotating superconductor are analyzed.The results show that the Berry curvature of the superconductor has the same expression form as the London moment,indicating that the London moment may be the inverse effect of A-B effect,which is a macroscopic quantum effect based on Berry phase.
作者 伍岳 肖立业 Wu Yue;Xiao Li-Ye(Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第13期354-359,共6页 Acta Physica Sinica
基金 国家自然科学基金创新研究群体科学基金(批准号:51721005) 中国科学院电工研究所科研基金(批准号:2021000038)资助的课题.
关键词 旋转超导体 LONDON 磁场 贝里相位 rotating superconductor London moment Berry phase
  • 相关文献

参考文献3

二级参考文献16

  • 1易昌练,张永清,严陆光.在磁场中生长单晶技术与超导应用[J].电工电能新技术,1990,9(1):44-51. 被引量:1
  • 2Hendrciks J B, King C A, Rorschach H E. Journal of Low Temperature Physics[J], 1971, 4(2): 209.
  • 3Verheijen A A, Van Ruitenbeek J M, R De Bruyn Ouboter. Nature[J], 1990, 345:418.
  • 4Martin A Sanzari, Cui H L, Francis Karwacki. Appl Phys Lett[J], 1996, 68(26): 3802.
  • 5Capellmann H. Eur Phys J[J], 2002, B25:25.
  • 6De Matos C J, Tajmar M. Physica[J], 2005, C432:167.
  • 7John T Anderson. Near Zero:New Frontiers of Physics[M]. US: Standford, 1988.
  • 8Tate J, Cabrera B, Felch S B et al. Physical Rev[J], 1989, 62: 848.
  • 9[1]Meissner W and Ochsenfeld R 1933 Naturwiss 21 787
  • 10[2]Recker R,Sauter F and Haller C 1933 Z.Phys. 85 772

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部