摘要
毕达哥拉斯模糊集(Pythagorean fuzzy set,PFS)是传统直觉模糊集(intuitionistic fuzzy set,IFS)的扩展,能在更广泛区域处理多属性信息决策问题。首先,针对某文献毕达哥拉斯模糊数(Pythagorean fuzzy number,PFN)排序方法存在的错误,分析了其产生原因。其次,在毕达哥拉斯模糊环境下,基于可靠信息量所对应的曲边梯形面积(curved trapezoidal area,CTA)提出了新的得分函数公式,进而给出了PFN的排序准则,并讨论了该得分函数的基本性质。最后,用实例说明给出的排序方法克服了其他方法的某些缺陷,具有一定优势。
Pythagorean fuzzy set(PFS)is an extension of traditional intuitionistic fuzzy set(IFS).It can deal with decision-making problems with multi-attribute information in a wider area.In this paper,we first point out errors in the ranking criterion of Pythagorean fuzzy number(PFN)proposed in a paper,and analyze the reasons that cause these errors through the derivation of reliable information(accuracy function).Then,we propose a new score function through the curved trapezoidal area(CTA)corresponding to the reliable information,which provides a ranking criterion of PFN.The basic properties of the score function are discussed.Finally,we show an example indicating the effectiveness and advantage of the new ranking method.
作者
陶玉杰
索春凤
TAO Yujie;SUO Chunfeng(School of Mathematics,Tonghua Normal University,Tonghua 134002,Jilin Province,China;School of Mathematics and Statistics,Beihua University,Jilin 132000,Jilin Province,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2022年第4期391-397,共7页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(61374009)
吉林省教育厅科学技术研究项目(JJKH20210540KJ)。