期刊文献+

求解大规模矛盾方程组的最小二乘支持向量机算法 被引量:2

A least square support vector machine algorithm for solving huge contradictory equations
下载PDF
导出
摘要 房价预测、共享单车出租数量预测、空气污染情况预测等常涉及矛盾方程组求解,对其数值求解方法研究具有重要的理论意义与应用价值。当矛盾方程组规模过大时,用传统的最小二乘法求解,不仅计算量大,而且由于误差积累使最终结果的准确性不高。鉴于此,采用机器学习中的最小二乘支持向量机(least squares support vector machine,LS-SVM)算法求解大规模矛盾方程组,并分别针对线性、非线性、单变量、多变量矛盾方程组进行了数值求解。数值结果表明,数据类型和数据量的变化对结果的影响不大,因此只要选取适当的参数就可建立合适的模型,得到高精度的预测结果。 Contradictory equations often appear in the predictions of housing price, the number of shared bike rentals, air pollution and other problems. It is of important theoretical significance and practical application value to conduct research on the related numerical method. When the number of contradictory equations is huge, it is too difficult to use the traditional least square method to solve the problem due to the accumulation of errors. In view of this, this paper adopts the least square support vector machine(LS-SVM) algorithm, which is suitable for machine learning of big data process, to solve the huge contradictory equations, and applies the algorithm to problems with practical application background.Experimental results show that the linear, nonlinear, univariate and multivariable contradictory equations can be solved numerically, the change of data type and data volume does not affect the results much, and the appropriate model can be built to obtain high accuracy results as long as the appropriate parameters are selected.
作者 郑素佩 闫佳 宋学力 陈荧 ZHENG Supei;YAN Jia;SONG Xueli;CHEN Ying(School of Science,Chang'an University,Xi'an 710064,China)
机构地区 长安大学理学院
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2022年第4期435-442,共8页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(11971075) 陕西省自然科学基金青年项目(2020JQ-338,2020JQ-342)。
关键词 大规模矛盾方程组 机器学习 LS-SVM 最小二乘法 huge contradictory equations machine learning LS-SVM least square method
  • 相关文献

参考文献6

二级参考文献49

  • 1王华忠,俞金寿.基于核函数主元分析的软测量建模方法及应用[J].华东理工大学学报(自然科学版),2004,30(5):567-570. 被引量:9
  • 2VNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3孙宗海.支持向量机及其在控制中的应用研究[M].浙江:浙江大学信息科学与工程学院,2003..
  • 4Frank B E,Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35 (2): 109 ~135.
  • 5Qin S J, McAvoy T J, Nonlinear PLS modeling using neural networks. Computers Chem. Engng. 1992,16(4) :379~391.
  • 6Wang Huazhong,Yu Jinshou. Application Study on Nonlinear Dynamic FIR Modeling Using Hybrid SVM-PLS Method,In:Chu Jian(eds),Proceedings of the 5thworld conference on intelligent control and automation ( WCICA ' 05 ), 2004, Hangzhou,3479~3482.
  • 7Martin E B, Morris J, Zhang J. Process performance monitoring using multivariate statistical process control. IEE Proc Control Theory, 1996,143(2): 132~ 144.
  • 8Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J, 1991,37 (2): 233 ~243.
  • 9Vapnik V N. The nature of Statistical Learning Theory. NY:Spring-Verlag, 1998.?A
  • 10Mller K-R,Mika S,Ritsch G,et al. An introduction to kernelbased learning algorithms. IEEE transactions on neural networks,2001,12(2) : 181~202.

共引文献102

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部