摘要
基于分时分区精细化气象数据,研发地区电网短期负荷智能预测系统,实现功率曲线的日前精确预测。该系统的特点在于将网供负荷分解为多种功率分量的叠加,并针对各功率分量特点和影响因素,提供多种特征选择模式、预测方法以及历史参照日,以提高短期负荷预测的精度、自动化程度和工作效率。
Based on the time-zoned refined meteorological data,the regional power grid short-term load intelligent prediction system is developed to realize the accurate forecast of the power curve.The features of this system are to decompose the grid supply load into the superposition of various power components,and to provide a variety of feature selection modes,prediction methods and historical reference dates according to the characteristics and influencing factors of each power component,which improves the accuracy,automation and work efficiency of short-term load forecasting.
作者
李丹
张远航
李黄强
童华敏
王凌云
LI Dan;ZHANG Yuanhang;LI Huangqiang;TONG Huamin;WANG Lingyun(College of Electrical Engineering and New Energy,Three Gorges University,Yichang 443002,China;Hubei Provincial Key Laboratory of Operation and Control of Cascade Hydropower Stations,Three Gorges University,Yichang 443002,China;Yichang Power Supply Company of State Grid Hubei Electric Power Co.,Ltd.,Yichang 443000,China)
出处
《中国电力》
CSCD
北大核心
2022年第7期128-133,共6页
Electric Power
基金
国家自然科学基金资助项目(51807109)。
关键词
负荷预测
气象数据
新能源功率预测
预测系统
load forecasting
weather data
renewable energy generation power forecasting
forecasting system