期刊文献+

采用改进黑猩猩优化算法的特征选择 被引量:2

Feature Selection Based on Improved Chimp Optimization Algorithm
下载PDF
导出
摘要 针对黑猩猩优化算法在勘探阶段可能会陷入局部最优的缺点,提出了一种改进的黑猩猩优化算法。首先计算适应度值最高和最低的黑猩猩之间的斯皮尔曼等级相关系数,然后采用甲虫天线搜索算法使得适应度值低的黑猩猩获得嗅觉能力,以提高适应度值低的黑猩猩的局部勘探开发能力。同时为解决传统支持向量机在封装式特征选择中分类精度较差的问题,将改进后的黑猩猩优化算法与支持向量机相结合,实现同步优化。为了验证所提方法的有效性,选取了UCI(University of California,Irvine)数据库中的10个数据集进行实验,从精确度、所用特征个数和适应度值三个方面与常用算法进行比较和综合评价,实验结果表明该算法具有更好的精确度和稳定性,有效适用于特征选择这一工程问题。 Aiming at the shortcoming that the chimp optimization algorithm(CHOA) may fall into local optimum in the exploration stage, an improved chimp optimization algorithm(ICHOA) is proposed. Firstly, the Spearman rank correlation coefficient between the chimps with the highest fitness value and the chimps with the lowest fitness value is calculated, and then the beetle antenna search algorithm(BAS) is used to make the chimps with low fitness value obtain the olfactory ability,so as to improve the local exploration and development ability of chimps with low fitness value. Meantime, in order to solve the problem of poor classification accuracy of traditional support vector machine in wrapper feature selection, the ICHOA is combined with support vector machine to realize synchronous optimization. To verify the effectiveness of the proposed method, 10 datasets in UCI database are selected for experiments. The algorithm is compared with the common algorithms in terms of accuracy, the number of features used and the fitness value. The experimental results show that the algorithm has better accuracy and stability, which can be applied to the engineering problem of feature selection effectively.
作者 张婉莹 冷欣 贾鹤鸣 ZHANG Wan-ying;LENG Xin;JIA He-ming(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China;School of Information Engineering,Sanming University,Sanming 365004,China)
出处 《三明学院学报》 2022年第3期37-45,共9页 Journal of Sanming University
基金 教育部产学合作协同育人项目(202002064014) 福建省自然科学基金项目(2021J011128) 福建省中青年教师教育科研项目(JAT200618) 三明市引导性科技项目(2021-S-8,2020-G-61) 三明学院科学研究发展基金(B202009) 三明学院引进高层次人才科研启动经费支持项目(20YG14) 三明学院高教研究课题(SHE2013) 中央高校基本科研业务费专项资助基金(2572018BF11)。
关键词 特征选择 支持向量机 黑猩猩优化算法 斯皮尔曼等级相关系数 甲虫天线搜索算法 feature selection support vector machines chimp optimization algorithm Spearman’s rank correlation coefficient beetle antenna search algorithm
  • 相关文献

参考文献6

二级参考文献53

  • 1段晓东,王存睿,王楠楠,刘向东,石丽.一种基于粒子群算法的分类器设计[J].计算机工程,2005,31(20):107-109. 被引量:13
  • 2蔡良伟,李霞.遗传算法交叉操作的改进[J].系统工程与电子技术,2006,28(6):925-928. 被引量:45
  • 3VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 4TEODOROVIC D, LUCIC P, MARKOVIC G, et al. Bee colony optimization:principles and applications[C]//Proceedings of the 8th Seminar on Neural Network Applications in Electrical Engineering. Piscataway, NJ:IEEE, 2006:151-156.
  • 5NIKOLIC M, TEODOROVIC D. Empirical study of the Bee Colony Optimization (BCO) algorithm[J]. Expert Systems with Applications, 2013, 40(11):4609-4620.
  • 6KANG F, LI J, MA Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J]. Information Sciences, 2011, 181(16):3508-3531.
  • 7BOLóN-CANEDO V, SANCHEZ-MARONO N, ALONSO-BET-ANZOS A. A review of feature selection methods on synthetic data[J]. Knowledge & Information Systems, 2013, 34(3):483-519.
  • 8DZIWINSKI P, LUKASZ BARTCZUK, STARCZEWSKI J T. Fully controllable ant colony system for text data clustering[C]//Proceedings of the 2012 International Symposia on Swarm and Evolutionary Computation. Berlin:Springer, 2012:199-205.
  • 9KASHAN M H, NAHAVANDI N, KASHAN A H. DisABC:a new artificial bee colony algorithm for binary optimization[J]. Applied Soft Computing, 2012, 12(1):342-352.
  • 10ASAD A H, AZAR A T, HASSAANIEN A E O. A comparative study on feature selection for retinal vessel segmentation using ant colony system[C]//Proceedings of the 2nd International Symposium on Intelligent Informatics. Berlin:Springer, 2014, 235:1-11.

共引文献115

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部