期刊文献+

交错二项式系数连带奇数倒数平方和级数

The Series of Binomial Coefficients Associated Square Sum of Reciprocal of Continuative Odd Numbers
下载PDF
导出
摘要 根据一个已知级数,使用裂项方法得到一个分母含有1个、2个、3个等奇偶性因子的二项式系数连带奇数倒数平方和的级数。利用反正弦与反双曲正弦关系给出交错二项式系数倒数连带连续奇数倒数平方和级数。得到级数封闭型的和式,同时得到二项式系数连带奇数倒数平方和的级数恒等式。 According to a known series,Msing the split term method to get a series with 1,2,and 3 equal parity factors of the denominator and the odd reciprocal square sum of the binomial coefficient.By the relation between arcsine and inverse hyperbolic function,the reciprocal series of alternating binomial coefficient with continuous odd reciprocal square sum was given.The closed summation of the series was obtained,and the series identity of the binomial coefficient with the odd reciprocal square summation was obtained.
作者 张来萍 及万会 ZHANG Laiping;JI Wanhui(Xinhua College, Ningxia University, Yinchuan 750021, China;Department of Education, Ningxia Vocational and Technical College, Wuzhong 751100, China)
出处 《河南教育学院学报(自然科学版)》 2022年第2期16-26,共11页 Journal of Henan Institute of Education(Natural Science Edition)
基金 国家自然科学基金项目(12062021) 宁夏大学新华学院科研项目(20XHKY07)。
关键词 二项式系数 平方和 微分-裂项 级数 封闭型和式 binomial coefficients square sum split terms series closed summation
  • 相关文献

参考文献12

二级参考文献34

  • 1编写组.数学手册[M].北京:人民教育出版社,1979.802~803.
  • 2Sury B,Wang T N,Zhao F Z. Some identities involving of binomial coefficients [J]. Journal of Integer Sequences, 2004,7(2):1-12. .
  • 3Sofo A. General properties involving reciprocal of Binomial coefficients[J]. Journal of Integer Sequences, 2006,9(4): 1-13.
  • 4Sprugnoli R. Sums of reciprocal of the central binomial coefficients[J]. Integral: Electronic Journal of Combinatorial NumberTheory, 2006, 6: 1-17.
  • 5Yang J H, Zhao F Z. Sums involving the inverses of binomial coefficients [J]. Journal of Integer Sequences,2006, 9(4): 1-11.
  • 6Borwein J M,Girgensohn R. Evaluation of binomial series[J]. Aequationens Math, 2005,70: 25-36.
  • 7Amghibech S. On sum involving Binomial coefficient[J]. Journal of Integer Sequences, 2007,10(2): 1-4.
  • 8Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 9Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 10Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部