期刊文献+

基于机器学习算法的输电线路工程投资预测 被引量:4

Transmission Line Project Investment Prediction Based on Machine Learning Algorithm
下载PDF
导出
摘要 技术方案深度的不足导致依据定额概预算来确定输电线路工程投资的方法准确性低、工作量大,因此,研究基于机器学习的投资预测模型需求迫切。针对输电线路投资的高维数、非线性等特点,提出了基于极端梯度提升(extreme gradient boosting,XGBoost)算法的输电线路工程投资预测方法。通过采用实际输电线路工程数据对模型进行训练和测试,预测结果显示XGBoost模型在预测精度、结果偏差方面相较于神经网络和支持向量机(support vector machine,SVM)都具有较大的优势,能输出指标重要性排序,为决策者提供有效的投资额和控制指标参考,且模型的可靠性和可解释性较高。 The lack of depth of technical solutions leads to the low accuracy and heavy workload of the method to determine the transmission line project investment based on the quota budget.Therefore,it is urgent to study the investment prediction model based on machine learning.According to the characteristics of high dimension and nonlinearity of transmission line investment,a transmission line project investment prediction model based on extreme gradient boosting(XGBoost)algorithm was proposed.The model proposed was trained and tested by using the actual transmission line project data.The prediction results show that the XGBoost model has a great advantage over neural network and support vector machine(SVM)model in terms of prediction accuracy and deviation of results,and can output the index importance ranking,which can provide effective investment and control index reference for decision makers.And the model is highly reliable and interpretable.
作者 卢文飞 袁竞峰 张嘉澍 管维亚 张建峰 LU Wen-fei;YUAN Jing-feng;ZHANG Jia-shu;GUAN Wei-ya;ZHANG Jian-feng(School of Civil Engineering, Southeast University, Nanjing 211189, China;State Grid Jiangsu Economic Research Institution, Nanjing 210008, China)
出处 《科学技术与工程》 北大核心 2022年第17期6992-7001,共10页 Science Technology and Engineering
基金 国网江苏电力设计咨询有限公司科技咨询项目(SXZC-2020-0801A)。
关键词 机器学习 XGBoost 输电线路工程 投资预测 machine learning XGBoost transmission line projects investment prediction
  • 相关文献

参考文献17

二级参考文献188

共引文献364

同被引文献51

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部