摘要
针对多关节机械手因关节抖震产生误差导致多关节机械手控制不稳定问题,提出了一种基于粒子群优化模糊神经网络的多关节机械手运动控制算法。该算法利用神经网络能够很好地预测和逼近目标值的特性和模糊函数对神经网络的互补性,并使用粒子群算法对神经网络的关节输出角度进行优化,极大地减小了多关节机械手因抖震产生的误差,尽可能避免了机械手的速度跟踪误差和位置跟踪误差,利用Lyapunov稳定性理论证明了该方法的稳定性,并通过对双关节机械手系统的仿真验证了该算法的可行性和合理性。
Aiming at the problem of instability of multi-joint manipulator control due to joint chattering errors,this paper proposes a multi-joint manipulator motion control algorithm based on particle swarm optimization and fuzzy neural network.The algorithm uses the neural network's ability to predict and approximate the target value and the complementarity of the fuzzy function to the neural network,and uses the particle swarm algorithm to optimize the joint output angle of the neural network,which greatly reduces the factor of the multi-joint manipulator.The error caused by chattering avoids the speed tracking error and position tracking error of the manipulator as much as possible.The stability of the method is proved by the Lyapunov stability theory,and the feasibility and feasibility of the algorithm are verified by the simulation of the dual-joint manipulator system rationality.
作者
黄沁颖
欧阳华兵
陈田
HUANG Qin-ying;OUYANG Hua-bing;CHEN Tian(School of Mechanical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出处
《组合机床与自动化加工技术》
北大核心
2022年第7期95-98,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
上海市多向模锻工程技术研究中心项目(20DZ2253200)
上海市高峰高原学科资助项目(A1-5701-18-007-03)
交互式柔性机器人研究与开发(20B167)
上海电机学院临港新片区智能制造产业学院资助
上海市科委三年行动计划项目资助(22010501000)。
关键词
多关节机械手
轨迹规划
模糊神经网络
粒子群算法
multi-joint manipulator
trajectory planning
fuzzy neural network
particle swarm algorithm