期刊文献+

面向商品中文评论的方面抽取研究

Research on Aspect Extraction for Commodity Review in Chinese
下载PDF
导出
摘要 文本提出一种基于预训练语言模型双向Transformers编码表示(Bidirectional encoder representation from transformers,简称BERT)的商品中文评论方面抽取模型。首先,利用BERT模型对商品评论文本进行词嵌入;然后,利用BiGRU网络对词向量进行特征提取以获得文本特征,再通过注意力机制为每个字词赋予不同的关注度;接着,将文本特征和关注度融合得到新的文本特征;最后,将模型输出输入到CRF层中,抽取出评价对象的有关方面。该模型能够在编码阶段充分学习到词语的语义,实验结果表明,本文提出的方法提高了抽取准确度。 This paper proposes a BERT based extraction model of commodity review in Chinese.First,the BERT model is used to embed words in commodity review text.Then,the BiGRU network is used to extract the embedded word vectors to obtain text features.After that,new text features are obtained by combining the previous text features and attention.Finally,the model output is input into the CRF layer to extract the relevant aspects of the evaluation object.This model can fully learn the semantics of words in the embedding stage.Experimental results show that the proposed method improves the accuracy of extraction.
作者 苏明星 吴厚月 张顺香 SU Mingxing;WU Houyue;ZHANG Shunxiang(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《宿州学院学报》 2022年第6期1-5,35,共6页 Journal of Suzhou University
基金 国家自然科学基金面上项目(62076006) 安徽高校协同创新项目(GXXT-2021-008) 安徽省重点研发计划国际科技合作专项(202004b11020029)
关键词 BERT 方面抽取 商品中文评论 BiGRU-CRF BERT Aspect extraction Commodity review in Chinese BiGRU-CRF
  • 相关文献

参考文献6

二级参考文献46

  • 1叶正,林鸿飞,苏绥,刘菁菁.基于支持向量机的人物属性抽取[J].计算机研究与发展,2007,44(z2):271-275. 被引量:11
  • 2李景,孟宪学,苏晓路,钱平.领域本体中的概念及其领域属性研究[J].现代图书情报技术,2007(4):5-7. 被引量:4
  • 3王璐,朱东华,任智军.科技术语属性抽取方法研究[J].现代图书情报技术,2007(5):69-72. 被引量:8
  • 4Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proc. of the 18th International Conference on Machine Learning. Williamstown, Australia: [s. n.], 2001.
  • 5Friedrich C M, Revillion T, Hofmann M, et al. Biomedical and Chemical Named Entity Recognition with Conditional Random Fields: The Advantage of Dictionary Features[C]//Proc. of the 2nd International Symposium on Semantic Mining in Biomedicine. Jena, Germany: [s. n.], 2006.
  • 6Wellner B, McCallum A, Peng Fuchun, et al. An Integrated, Conditional Model of Information Extraction and Coreference with Application to Citation Graph Construction[C]//Proc. of the 20th Conference on Uncertainty in Artificial Intelligence. Banff, Canada:[s. n.], 2004.
  • 7Li Huifeng,Srihari R K,Niu Cheng,et al.Location Normalization for Information Extraction[C]//Proc.of the 19th International Conference on Computational Linguistics.Taipei,China:[s.n.],2002.
  • 8Lafferty J,McCallum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proc.of the 18th International Conference on Machine Learning.San Francisco,USA:[s.n.],2001.
  • 9Chinchor N A.Overview of MUC-7/MET-2[C]//Proc.of the 7th Message Understanding Conference.Fairfax, Virginia: [s.n.], 1998.
  • 10俞鸿魁, 张华平, 刘群.基于角色标注的中文机构名识别[C]//Proc.of the 20th International Conference on Computer Processing of Oriental Languages.Shenyang, China: [s.n.], 2003.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部