摘要
针对带有非负变量、线性等式和凸二次约束的非凸二次规划问题,给出了一个带有矩阵非负和半正定约束的紧双非负规划(Doubly nonnegative programming,DNP)松弛,估计了它与原问题之间的间隙,并提出了求DNP松弛最优解的交替方向乘子法。数值实验表明:交替方向乘子法能有效找到DNP松弛问题的最优解,并且计算时间优于求解器CVX。
A tight doubly non-negative programming(DNP)relaxation with non-negative and positive semi-definite matrix constraints is developed for non-convex quadratic programming problems with non-negative variables,linear equations,and convex quadratic constraints.The gap between it and the original problem is estimated,and an alternating direction multiplier method is proposed to find an optimal solution of DNP relaxation.The numerical experiments show that the optimal solution of DNP relaxation can be found effectively by applying the alternating direction multiplier method,and the calculation time is better than the solver CVX.
作者
章显业
罗和治
ZHANG Xianye;LUO Hezhi(School of Science,Zhejiang Sci-Tech University,Hangzhou 310018 China)
出处
《浙江理工大学学报(自然科学版)》
2022年第4期601-607,共7页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
浙江省自然科学基金重点项目(LZ21A010003)
国家自然科学基金项目(11871433)。
关键词
非凸二次规划
双非负规划松弛
交替方乘子向法
半定规划
CVX
non-convex quadratic programming
doubly non-negative programming relaxation
alternating direction multiplier method
semi-definite programming
CVX