期刊文献+

基于无证书的格基代理签密方案 被引量:1

Certificateless Proxy Signcryption Scheme from Lattice
下载PDF
导出
摘要 无证书代理签密在信息安全领域发挥着越来越重要的作用。现有的大多数无证书代理签密基于传统数学理论,无法抵制量子计算攻击。该文采用格密码技术提出基于无证书的格基代理签密(L-CLPSC)方案。L-CLPSC在带错误学习(LWE)问题和小整数解(SIS)问题的困难假设下满足自适应选择密文攻击下的不可区分性和自适应选择消息攻击下的不可伪造性。相比较而言,L-CLPSC具有更高的计算效率和更低的通信代价。 Certificateless proxy signcryption plays an increasingly significant role in information security fields.Most of certificateless proxy signcryption schemes are based on traditional mathematic theory and can not resist the quantum computing attacks.In this paper,a new CertificateLess Proxy SignCryption from Lattice(L-CLPSC)is proposed by using lattice-based cryptography technology.L-CLPSC is indistinguishable against adaptive chosen-ciphertext attacks and unforgeable against adaptive chosen-message attacks under Learning With Errors(LWE)and Small Integer Solution(SIS)assumptions.Comparison shows L-CLPSC has higher computation efficiency and lower communication overhead.
作者 俞惠芳 王宁 YU Huifang;WANG Ning(School of Cyberspace,Xi’an University of Posts&Telecommunications,Xi’an 710121,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2584-2591,共8页 Journal of Electronics & Information Technology
基金 陕西省自然科学基金基础研究计划重点项目(2020JZ-54)。
关键词 格密码 无证书代理签密 小整数解问题 带错误学习问题 Lattice-based cryptography Certificateless proxy signcryption Small Integer Solution(SIS)problem Learning With Errors(LWE)problem
  • 相关文献

参考文献6

二级参考文献34

  • 1MAMBO M, USUDA K, OKAMOTO E. Proxy signatures for delegating signing operation[C]//Proc 3rd ACM Confer- ence on Computer and Communications Security. New York z ACM, 1996:48-57.
  • 2SHOR P W. Polynomial-time algorithm for prime faetorization and discrete logarithm on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5) :1484-1509.
  • 3GENTRY C,PEIKERT C, VAIKUNTANATHAN V. Trap- doors for hard lattices and new cryptographic constructions[C]//Proc 40th ACM Symp on Theory of Computing (STOC). New York: ACM, 2008:197-206.
  • 4REGEV O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the ACM, 2009, 56 (6):1-40.
  • 5PEIKERT C. Public-key cryptosystems from the worst-case shortest vector problem[C]//Proc 41st ACM Symp on Theory of Computing (STOC). New Yorkz ACM, 2009:333-342.
  • 6AGRAWAL S, BONEH D,BOYEN X. Efficient lattice (H) IBE in the standard model[ C]//Advances in Cryptology-Euro- crypt 2010. Berlin.. Springer Verlag, 2010: 553-572.
  • 7LYUBASHEVSKY V,PEIKERT C,REGEV O. On ideal lat- tices and learning with errors over rings[C]//Advances in Cryptology-Euroerypt 2010. Berlin: Springer Verlag, 2010, 1 -23.
  • 8LENSTRA A K, LENSTRA H W, LOV'ASZ L. Factoring polynomials with rational coefficients [J]. Math Ann, 1982, 2.61(4) ,515-534.
  • 9MICCIANCIO D, REGEV O. Worst-case to average-case re- ductions based on gaussian measures[J]. SIAM J Comput, 2007, 37(1) :267-302.
  • 10AITAI M. Generating hard instances of the short basis prob- lem[C]// ICALP 1999. Berlin~ Springer Verlag, 1999 : 1-9.

共引文献48

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部