期刊文献+

基于多层次非负稀疏编码和SVM的窃电检测方法 被引量:4

Electricity theft detection based on multi-level non-negative sparse coding and electricity theft scenario analysis
下载PDF
导出
摘要 针对现有方法对新型窃电方式检测准确率不高的问题,文中提出了一种基于多层次非负稀疏编码和支持向量机(support vector machines,SVM)的窃电检测新方法。该方法以月度用电曲线为检测对象,基于多层次非负稀疏编码提取样本的多层次用电模式特征,以及窃电情景分析提取样本的数值统计特征,将二者的融合检测特征输入SVM分类器进行窃电检测。以爱尔兰智能电表数据集构造的算例验证了所提方法能够提高窃电检测的精确率和召回率。 Existing detection methods of electricity theft have low detection accuracy for new means of electricity theft.This paper proposes a new theft detection method based on multi-level non-negative sparse coding and SVM.Using the monthly electricity consumption curve as the detection object,firstly,the multi-level electricity consumption pattern characteristics of the sample are extracted based on the multi-level non-negative sparse coding;next,the numerical statistical characteristics of the sample are extracted based on the electricity theft scenario analysis;then,the fusion detection features of the above two characteristics are input into the SV M classifier for electricity theft detection.Finally,the Irish smart meter.data set is used as the example to verify the effectiveness of the proposed method,showing the improved accuracy and recall rate of the detection.
作者 黄刚 颜伟 王浩 文旭 张爱枫 夏春 HUANG Gang;YAN Wei;WANG Hao;WEN Xu;ZHANG Aifeng;XIA Chun(State Key Laboratory of Power Transmission Equipment&System Security and New Technology,Chongqing University,Chongqing 400044,P.R.China;Shenzhen Power Supply Bureau Co.nLtd.,Shenzhen 440310,Guangdong,P.R.China;Southwest Subsection of State Grid,Chengdu 610041,P.R.China;Chongqing Electric Power Trading Center Co.,Ltd.,Chongqing 400013,P.R.China)
出处 《重庆大学学报》 CSCD 北大核心 2022年第7期1-12,23,共13页 Journal of Chongqing University
基金 国家自然科学基金资助项目(51677012)。
关键词 窃电检测 多层次 非负稀疏编码 情景分析 支持向量机 electricity theft detection multi-level non-negative sparse coding scenario analysis SVM
  • 相关文献

参考文献5

二级参考文献38

  • 1程琼,庄留杰,付波.基于傅立叶描述子和人工神经网络的步态识别[J].武汉理工大学学报,2008,30(1):126-129. 被引量:11
  • 2薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 3Maurer U, Rowe A, Smailagic A, et al. eWatch: a wearable sensor and notification platform[C]///Proceedings of The International Workshop on Wearable and lmplantable Body Sensor Networks, April 3-5,2006, Cambridge, MA. [S. 1.]: IEEE,2006 : 142-145.
  • 4He Z Y, Jin L W.Aetivity recognition from acceleration data using AR model representation and SVM[C]// Proceedirids of 2008 International Conference on Machine Learning and Cybernetics,July 12-15,2008, Kunming, China. [S.1.] : IEEE,2008:2245-2250.
  • 5Nam Y Y, Park J W. Child activity recognition based on cooperative fusion model of a triaxial aecelerometer and a barometric pressure sensor[-J]. IEEE Journal of Biomedical and Health Informatics, 2013,17 (2) : 420-426.
  • 6Qian H M, Mao Y B, Xiang W B, et al. Recognition of human activities using SVM multi-class elassifier[J].Pattern Recognition Letters,2010,31(2) : 100-111.
  • 7Song S K., Jang J, Park S. An efficient method for activity recognition of the elderly using tilt signals of tri-axial aeceleration sensor[C]//ICOST 2008 Proceedings of the 6th international conferenee on Smart Homes and Health Telematics,June 28- July 2,2008, IA, USA. [S. 1. ] : Springer Berlin Heidelberg, 2008,5120 : 99-104.
  • 8Yang M J,Zheng H R,Wang H Y,et al.Combining feature ranking with PC A:An application to gait analysis[C]ff 2010 International Conference on Machine Learning and Cybernetics, July 11-14, 2010, Qingdao, China. [ S. 1.]: IEEE, 2010: 494-499.
  • 9He Z Y,Jin L W.Activity recognition from acceleration data based on diserete consine transform and SVM[C] ff 2009 IEEE International Conference on Systems, October 11-14, San Antonio, TX. [S. 1. ] : IEEE, 2009 : 5041-5044.
  • 10Albayrak M,Allahverdi N.Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms[J].Expert System With Application,2011,38(3)11313-1320.

共引文献222

同被引文献40

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部