期刊文献+

基于卷积神经网络的多模型交通场景识别研究

Research on Multi-model Traffic Scene Recognition Based on Convolution Neural Network
下载PDF
导出
摘要 利用人工智能中的视觉分析技术,实现对高分辨率交通视频中出现的各个目标类别进行实时目标检测、语义分割和目标追踪。数据集结合BDD100K和Mapillary Vistas。训练中不仅对模型中的参数进行调整,还对多个模型进行改进与创新。目标检测模型使用EfficientNet-B1作为主干网络,使用ASPP与改进后的FPN作为脖颈网络,通过引入多种模型训练技巧,对模型进行优化,最终结果减少约2.3倍的参数量,在不同数据集上的准确率都有所提升。目标追踪使用DeepSort追踪算法对多个目标类别进行追踪计数。语义分割使用Encoder-Decoder结构,使用EfficientNet-B4作为主干网络,参照U-Net++网络使用卷积层作为特征提取模块,反卷积层作为上采样模块,通过联结不同大小的特征图,得到最终输出结果。将改进语义分割模型与MobileNetV2和DeeplabV3网络结合的模型进行对比,减少约1.35倍的参数量。实验证明,通过深度学习算法提取鲁棒性特征能够为自动驾驶和辅助驾驶场景中的检测识别提供便利。 The visual analysis technology in artificial intelligence is used to realize real-time object detection,semantic segmentation and object tracking for each object category in high-resolution traffic video.The dataset combines BDD100K and Mapillary Vistas.In the training,not only the parameters in the model are adjusted,but also several models are improved and innovated.The object detection model uses EfficientNet-B1 as the backbone network and uses ASPP and improved FPN as the neck network.By introducing a variety of model training skills,the model is optimized.The final result reduces the number of parameters by about 2.3 times and improves the accuracy on different datasets.Object tracking uses the DeepSort tracking algorithm to track and count multiple object categories.The semantic segmentation uses the Encoder-Decoder structure and EfficientNet-B4 as the backbone network,and referring to the U-Net++network,it uses the convolution layer as the feature extraction module and the deconvolution layer as the up sampling module,and obtains the final output result by connecting the feature maps of different sizes.The improved semantic segmentation model is compared with the model combined with MobileNetV2 and DeeplabV3 network,and the number of parameters is reduced by about 1.35 times.Experiments show that extracting robust features through deep learning algorithm can facilitate the detection and recognition in automatic driving and assisted driving scenes.
作者 姚芷馨 张太红 赵昀杰 YAO Zhi-xin;ZHANG Tai-hong;ZHAO Yun-jie(Xinjiang Agricultural University,Urumqi 830052,China)
机构地区 新疆农业大学
出处 《计算机技术与发展》 2022年第7期93-98,共6页 Computer Technology and Development
基金 自治区科技重大专项(2017A01002) 自治区创新项目(XJAUGRI2019035) 校级创新项目(XJAUGRI2021048)。
关键词 目标检测 语义分割 特征提取 上采样 鲁棒性特征 object detection semantic segmentation feature extraction up sampling robust characteristics
  • 相关文献

参考文献3

二级参考文献102

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Koller D, Weber J, Malik J. Robust Multiple Car Tracking with Occlusion Reasoning[C]//Proc. of the 3rd European Conference on Computer Vision. Stockholm, Sweden: [s. n.], 1994.
  • 3Ervin R, MacAdam C, Walker J, et al. System for Assessment of the Vehicle Motion Environment(SAVME)[R]. Washington D. C., USA: National Highway Traffic Safety Administration, Tech. Rep.: UMTR 1-2000-21 - 1, 2000.
  • 4Kamijo S, Matsushita Y, lkeuchi K, et al. Occlusion Robust Tracking Utilizing Spatio-temporal Markov Random Field Model[C]//Proc. of ICPR'00. Barcelona, Spain: IEEE Computer Society, 2000.
  • 5Antonini G, Thiran J P. Counting Pedestrians in Video Sequences Using Trajectory Clustering[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2006, 16(8): 1008-1020.
  • 6Beymer D, McLauchlan P, Coifman B. A Real Time Computer Vision System for Measuring Traffic Parameters[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 1997.
  • 7Koller D, Daniilidis K, Nagel H H. Model-based Object Tracking in Monocular Image Sequences of Road Traffic Scenes[J]. International Journal of Computer Vision, 1993, 10(3): 257-281.
  • 8Kim Z, Malik J. Fast Vehicle Detection with Probabilistic Feature Grouping and Its Application to Vehicle Tracking[C]//Proc. of IEEE International Conference on Computer Vision. [S. 1.]: 1EEE Press, 2003.
  • 9Won'all A, Sullivan G, Baker K. Pose Refinement of Active Models Using Forces in 3D[C]//Proc. of the 3rd European Conference on Computer Vision. Stockholm, Sweden: [s. n.], 1994.
  • 10Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE International Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 1999.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部