摘要
垂体腺瘤是颅内常见的良性肿瘤,但可表现出高侵袭性和复发率,且发病率呈逐年上升趋势。影像组学和深度学习是人工智能在医学影像领域的重要研究方向,广泛应用于肿瘤影像研究,并在垂体腺瘤的异质性诊断、疗效评估及预后预测等方面发挥着重要作用。本文就影像组学和深度学习在垂体腺瘤的应用和研究进展进行综述。
Pituitary adenoma is a common benign intracranial tumor,but it can show high invasiveness and recurrence rate,and the incidence rate is increasing year by year.Radiomics and deep learning are important research directions of artificial intelligence in the field of medical imaging.They are widely used in tumor imaging research,and play an important role in the heterogeneous diagnosis,efficacy evaluation,and prognosis prediction of pituitary adenomas.This article reviews the application and research progress of radiomics and deep learning in pituitary adenomas.
作者
杨邱园
柯腾飞
杨斌
YANG Qiuyuan;KE Tengfei;YANG Bin(School of Clinical Medical,Dali University,Dali 671000,China;Department of Medical Imaging,Yunnan Cancer Hospital,Kunming 650018,China;Department of Medical Imaging,the First People's Hospital of Kunming,Kunming 650051,China)
出处
《磁共振成像》
CAS
CSCD
北大核心
2022年第7期160-163,共4页
Chinese Journal of Magnetic Resonance Imaging
基金
国家自然科学基金(编号:82160348)
中华国际医学交流基金会专项基金(编号:Z-2014-07-2101)
云南省医学学科后备人才项目(编号:H-2018008)。
关键词
垂体腺瘤
磁共振成像
人工智能
影像组学
深度学习
纹理特征
术前评估
预后
pituitary adenoma
magnetic resonance imaging
artificial intelligence
radiomics
deep learning
texture feature
preoperative evaluation
prognosis