期刊文献+

一种融合标签和知识图谱的推荐方法 被引量:3

A Recommendation Method Combining Tag and Knowledge Graph
下载PDF
导出
摘要 随着信息的海量增长,推荐系统成为我们日常生活中一种重要的应用。传统的推荐系统根据用户和物品的交互行为进行推荐并利用用户对物品的评分来体现用户的喜好,但是数据的稀疏性会影响推荐结果的准确度,并且简单地评分数字也难以体现用户偏好的主观性以及用户选择的可解释性。因此,该文提出了一种融合标签和知识图谱的推荐方法,其中标签是一种文本信息,其包含的丰富内容和潜在的语义信息可以体现用户对物品的主观评价,对推荐起着关键作用。而知识图谱作为一种有效的推荐辅助技术,其包含的大量实体能为物品提供更多有效的特征信息。此外,该文还提出了一种融合注意力和自注意力的混合注意力模型,通过标签和实体为物品特征分配混合注意力权重,从而提高了推荐性能。实验结果表明,在MovieLens和Last.FM数据集上,该模型的推荐性能较其他推荐算法有所提升。 The existing recommendation methods mostly adopt the interactive behavior of users and items,such as purchase records or ratings,to complete recommendation.To avoid the sparse interactions which affect the accuracy of the recommendation results,this paper proposes a recommendation method that combining tag and knowledge graph.The tag with rich content and inherited semantic information can reflect the user’s subjective evaluation for items,and it can play a key role in recommendation.The knowledge graph with a large number of entities which can provide more effective features for items.In addition,this paper also design a hybrid attention model that combines attention and self-attention to assign hybrid attention weights to item features based on tags and entities.Experiments on MovieLens and Last.FM datasets indicate an improved performance of the proposed model compared with other recommendation algorithms.
作者 冀欣婷 诺明花 JI Xinting;NUO Minghua(College of Computer Science,Inner Mongolia University,Huhhot,Inner Mongolia 010021,China;Inner Mongolia A.R.Key Laboratory of Mongolian Information Processing Technology,Huhhot,Inner Mongolia 010021,China)
出处 《中文信息学报》 CSCD 北大核心 2022年第6期125-134,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61966025) 内蒙古自然科学基金(2019MS06010) 内蒙古自治区高等学校科学研究项目(NJZY19011)。
关键词 标签 知识图谱 推荐系统 卷积神经网络 注意力 tag knowledge graph recommendation system CNN attention
  • 相关文献

参考文献6

二级参考文献26

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2Dwyer C,Hiltz S R,Passerini K.Trust and Privacy Concern Within Social Networking Sites:A Comparison of Facebook and MySpace[C]//Proceedings of the 13th Americas Conference on Information Systems (AMCIS 2007).Keystone,Colorado,2007.
  • 3Acquisti A and Gross R.Imagined Communities:Awareness Information Sharing and Privacy on the Facebook[C]//Proceedings of the 6th Workshop on Privacy Enhancing Technologies.Cambridge,UK.2006:36-58.
  • 4Celma O and Lamere P. Music Recommendation Tuto- rial[C]//Proceedings of the 16th ACM International Conference on Multimedia. New York, NY, USA. 2008.. 1157-1158.
  • 5Nanopoulos A,Rafailidis D and Symeonidis P et al.MusicBox:Personalized Music Recommendation Based on Cubic Analysis of Social Tags[J].Audio,Speech,and Language Processing,IEEE Transactions.2010.18(2):407-412.
  • 6Symeonidis P,Ruxanda M and Nanopoulos Aet al.Ternary semantic analysis of social tags for personalized music recommendation[C]//Proceedings of the ISMIR.Philadelphia,USA.2008:219-224.
  • 7Liang H,Xu Y and Li Y et al.Collaborative Filtering Recommender Systems Using Tag Information[C]//Proceedings of the Web Intelligence and Intelligent Agent Technology.Sydney,Australia.2008:59-62.
  • 8Shepitsen A,Gemmell J,and Mobasher Bet al.Personalized recommendation in social tagging systems using hierarchical clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems(RecSys '08).New York,NY,USA.2008:259-266.
  • 9Cai R,Zhang C and Wang C et al.MusicSense:contextual music recommendation using emotional[C]//Proceedings of the 15th International Conference on Multimedia Allocation Modeling.New York,NY,USA.2007:553-556.
  • 10Tatli I,Birturk A.A Tag-Based Hybrid Music Recommendation System Using Semantic Relations and Multi-domain Information[C]//Proceedings of the Data Mining Workshops (ICDMW),2011 IEEE 11th International Conference.Angeles,CA,USA.2011:548-554.

共引文献1054

同被引文献15

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部