摘要
针对高斯-马尔科夫定理只能保证最小二乘估计在线性无偏估计类中具有最小方差,和目前有偏估计对最小二乘估计的改善程度研究甚少的现状,提出研究典型有偏估计方法的均方误差极小值的一致性。结果表明:尽管不同有偏估计方法具有不同的结构形式,但是这些有偏估计方法对最小二乘估计方差的改善程度是相同的,即均方误差的极小值总是相等的。实例分析结果也表明:典型有偏估计方法的均方误差极小值是一致的。
Gauss-Markov theorem can only guarantee that the least squares estimation has the minimum variance in the linear unbiased estimation class.Considering poor study on making use of biased estimation to improve the least squares estimation,investigating the consistency of the minimum mean square error of the typical biased estimation methods was proposed.The results show that,different biased estimation methods have different structural forms and these biased estimation methods can improve the least squares estimation variance to the same degree.That is,the minimum value of the mean square error is always equal.A case analysis indicates that the minimum mean square error of the typical biased estimation method is consistent.
作者
岳元龙
张彩虹
赵晓磊
韩云峰
左信
YUE Yuan-long;ZHANG Cai-hong;ZHAO Xiao-lei;HAN Yun-feng;ZUO Xin(College of Information Science and Engineering,China University of Petroleum(Beijing);Offshore Oil Engineering Co.,Ltd.;CNOOC Research Institute Co.,Ltd.)
出处
《化工自动化及仪表》
CAS
2022年第4期484-491,共8页
Control and Instruments in Chemical Industry
基金
中国石油大学(北京)科研基金项目--水下温度压力一体变送器样机研制(CCL2021RCPS0063RSN)
中国石油大学(北京)科研基金项目--水下化学药剂注入阀样机研制试制(CCL2020RCPS0339RSN)。
关键词
有偏估计
均方误差
一致性
最小二乘估计
偏参数
biased estimation
mean square error
consistency
least squares estimation
partial parameter