期刊文献+

SINR概率感知下的无人机覆盖优化

UAV Coverage Optimization on SINR Probability Perception
下载PDF
导出
摘要 针对多无人机网络辅助灾区用户通信的场景,构建了一种基于信干噪比(Signal-to-Interference plus Noise Ratio,SINR)检测的概率感知模型,旨在最大化无人机服务区域的覆盖率,同时降低无人机额外能耗,并提升网络吞吐量。在该模型下,提出了两种改进的麻雀搜索算法,分别为Logistic高斯麻雀搜索算法(Logistic Gaussian Sparrow Search Algorithm,LGSSA)和Logistic柯西麻雀搜索算法(Logistic Cauchy Sparrow Search Algorithm,LCSSA)。首先使用Logistic混沌序列产生初始种群,以丰富种群的多样性,提高算法的全局搜索能力;然后,在LGSSA和LCSSA中分别引入高斯变异和柯西变异因子,以改善局部最优解。仿真结果表明改进后的算法可以有效地优化无人机的空中部署,大幅度提升无人机网络的覆盖率。 For multi-UAV network-assisted user communication in disaster areas,a probability perception model based on signal-to-interference plus noise ratio(SINR)detection is designed to maximize the coverage of the UAV service area,reduce additional energy consumption,and increase network throughput.Two improved Sparrow Search Algorithms(SSAs),Logistic Gaussian Sparrow Search Algorithm(LGSSA)and Logistic Cauchy Sparrow Search Algorithm(LCSSA)are proposed.First,the Logistic chaotic sequence is used to generate the initial population to enrich the diversity of the population and improve the global search ability of the algorithm.Then,Gaussian mutation and Cauchy mutation are introduced into LGSSA and LCSSA respectively to improve the local optimal solution.The simulation results show that the improved SSA can effectively optimize the three-dimensional deployment of UAV and increase the coverage rate of UAV network.
作者 董瑶瑶 王亚飞 姚媛媛 云翔 侯俊巍 DONG Yaoyao;WANG Yafei;YAO Yuanyuan;YUN Xiang;HOU Junwei(School of Information and Communication Engineering,Beijing Information Science and Technology University,Beijing 100101,China;Beijing Baicells Technologies Co.,Ltd.,Beijing 100101,China;China Shipbuilding Industry System Engineering Research Institute,Beijing 100101,China)
出处 《电讯技术》 北大核心 2022年第7期929-935,共7页 Telecommunication Engineering
基金 北京市自然科学基金-海淀原始创新联合基金(19L2022,L182039) 北京市教委科研计划项目(KM202011232002) 北京市自然科学基金-市教委联合资助项目(KZ201911232046)。
关键词 无人机网络 Logistic混沌 高斯变异 柯西变异 覆盖优化 UAV network Logistic chaos Gaussian mutation Cauchy mutation coverage optimization
  • 相关文献

参考文献4

二级参考文献43

  • 1KENNEDY J. Particle swarm optimization [ M]// SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. Berlin: Springer, 2010:760 - 766.
  • 2YEH W. New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series [ J]. IEEE Transactions on Neural Network and Learning Systems, 2013, 24(4) : 661 -665.
  • 3JORDEHI A R, JASNI J, WAHAB N A, et al. Enhanced leader PSO (ELPSO) : a new algorithm for allocating distributed TCSC's in power systems [ J]. International Journal of Electrical Power and Energy Systems, 2015,64: 771 - 784.
  • 4SUPAKAR N, SENTHIL A. PSO obstacle avoidance algorithm for robot in unknown environment [ C]//Proceedings of the 2013 International Conference on Communication and Computer Vision. Piseataway, NJ: IEEE, 2013:1-7.
  • 5SCOOTT-HAYWARD S, GARCIA-PALACIOS E. Channel time allocation PSO for gigabit multimedia wireless networks [ J]. IEEE Transactions on Multimedia, 2014, 16(3) : 828 -836.
  • 6GONG Y J, ZHANG J, CHUNG H S, et al. An efficient resource allocation scheme using particle swarm optimization [ J]. IEEE Transactions on Evolutionary Computation, 2012, 16(6) : 801 -816.
  • 7SHI Y, EBERHART R. A modified particle swarm optimizer [ C]// Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Piscataway, NJ: IEEE, 1998:69-73.
  • 8KIRAN M S, GUNDUZ M. A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems [ J]. Applied Soft Computing, 2013, 13(4) :2188 -2203.
  • 9WANG H, LI H, LIU Y, et al. Opposition-based particle swarm algorithm with Cauchy mutation [ C]// Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2007: 4750 - 4756.
  • 10SUBBARAJ P, RAJNARAYANAN P N. Optimal reactive power dispatch by particle swarm optimization with Cauchy and adaptive mutations [ C]// Proceedings of the 2010 International Conference on Recent Trends in Information, Telecommunication and Computing. Washington, DC: IEEE Computer Society, 2010: 110-115.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部