摘要
为改善旋翼飞机空地语音通信质量,针对旋翼飞机螺旋桨造成的幅度调制(Amplitude Modulation,AM)信号复杂多频干扰以及恶劣机舱背景噪声,提出了一种通信语音时频掩膜智能增强方法,从而实现对机舱噪声与复杂干扰的有效抑制。该方法首先对原始时域语音信号进行分帧与加窗,通过短时傅里叶变换获取幅度谱与相位谱;然后将原始幅度谱作为网络输入,采用深度神经网络分析其语音信号的特征,采用长短期记忆网络挖掘语音信号的时序上下文信息,实现对语音时频掩膜的准确估计,并将其用于增强原始幅度谱以得到网络输出;最后结合原始相位谱,通过逆短时傅里叶变换获得增强后的时域语音信号。仿真与实际测试表明,该方法可有效抑制旋翼飞机环境下的干扰噪声,提高通信语音信号质量。
In order to improve the quality of speech communication in air-to-ground rotor aircraft,a speech enhancement method is proposed to deal with complex multi-frequency interference caused by the propeller and the harsh noise in the cabin.The method is based on deep neural network,which estimates the time-frequency(T-F)mask and suppresses the noise and the interference effectively.The original time-domain speech signals are framed and windowed first,and the amplitude and phase spectrum are obtained through short-time Fourier transform(STFT).Then the original amplitude spectrum is taken as the input of the network,which analyzes the features of the speech signal.The main hidden layer,the Long Short-Term Memory(LSTM)network mines the sequential information in the speech signal,realizing the accurate estimation for the T-F mask of speech signal.The T-F mask augments the original amplitude spectrum,which is the output of the network.Combined with the original phase spectrum,the enhanced time-domain speech signal is reconstructed by inverse STFT(ISTFT).Simulation and test show that the proposed method can suppress the interference noise in the rotor aircraft environment effectively and improves the quality of the communication voice signal.
作者
田斌鹏
董文方
张昆
周良辰
文飞
TIAN Binpeng;DONG Wenfang;ZHANG Kun;ZHOU Liangchen;WEN Fei(The First Aircraft Institute,Aviation Industry Corporation of China,Ltd.,Xi’an 710089,China;School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
出处
《电讯技术》
北大核心
2022年第7期947-952,共6页
Telecommunication Engineering
关键词
旋翼飞机
空地语音通信
螺旋桨干扰
语音增强
深度学习
时频掩膜
rotor aircraft
air-to-ground speech communication
propeller interference
speech enhancement
deep learning
time-frequency mask