摘要
目的:构建基于企业级患者主索引的高脂血症(HLP)专病科研数据库,通过技术手段实现HLP早期预测和精准医疗。方法:选取上海市胸科医院HLP病历数据,基于企业级患者主索引(EMPI),通过自然语言处理、循环神经网络等技术实现“数据沙漏”。结果:HLP数据标准分为12个大类,共包含了361个数据元,截止2021年9月HLP专病科研数据库共纳入3301份病历。结论:建立HLP专病科研数据库有利于加速智慧医疗步伐,有望在疾病预测、精准医疗等方向产出更大的科研成果。
Objective:To construct a scientific research database of specific disease of hyperlipidemia(HLP)based on enterprise master patient index,and to achieve early prediction of HLP and precision medicine through technical means.Methods:Taking a tertiary grade A specialized hospital in Shanghai as the research object,based on the enterprise master patient index(EMPI),"hourglass of data"was implemented through technologies of natural language processing,recurrent neural network,etc..Results:The hyperlipidemia data standard was divided into 12 categories,including a total of 361 data elements.As of September 2021,3,301 medical records had been included in the HLP specific disease scientific research database.Conclusion:The establishment of HLP specific disease scientific research database is conducive to accelerating the pace of intelligent medical treatment,and is expected to produce greater scientific research results in the direction of disease prediction,precision medicine and so on.
作者
王毅豪
尚诗
袁骏毅
汤钦华
WANG Yi-hao;SHANG Shi;YUAN Jun-yi(不详;Information Center,Shanghai Chest Hospital,Shanghai Jiao Tong University,Shanghai 200030,China)
出处
《中国医学装备》
2022年第7期116-120,共5页
China Medical Equipment
基金
上海市经信委信息化发展专项基金资助课题(202002009)“基于心血管专病数据库的多中心协作及临床风险预测平台”。
关键词
专病数据库
高脂血症(HLP)数据标准
患者主索引
大数据沙漏模型
后结构化
Specific disease database
Hyperlipidemia data(HLP)standard
Master patient index
Big data hourglass model
Post-structuralization