期刊文献+

复杂观测环境下GNSS信号分类及精度评估 被引量:1

GNSS Signal Classification and Accuracy Evaluation in Complex Observation Environment
下载PDF
导出
摘要 基于高度角、信噪比和伪距残差3个指标,采用K均值(Kmeans^(++))、迭代自组织数据分析法(ISODATA)和基于密度带有噪声的空间分类法(DBSCAN)对复杂城市观测环境下的GNSS数据进行分类,并采用伪距单点定位模型(SPP)评估不同算法的分类精度。结果表明,Kmeans^(++)算法分类精度最优,在E、N、U 3个方向上的定位精度分别达2.56 m、3.25 m、9.73 m;相较于未采用Kmeans^(++)算法的定位精度分别提升57.86%、47.64%、60.98%。为进一步验证算法性能,将Kmeans^(++)算法与信噪比、高度角阈值法进行精度对比,结果表明,Kmeans^(++)算法的平面和三维定位精度均有显著改善,分别提升24.87%、39.07%(信噪比阈值法)和41.36%、59.91%(高度角阈值法)。 Based on the three indicators of altitude angle,signal-to-noise ratio and pseudorange residual,this paper adopts K-means(Kmeans^(++)),iterative self-organizing data analysis method(ISODATA)and density-based spatial classification with noise(DBSCAN)to classify the GNSS data in complex urban observation environments.We evaluate the classification accuracy of different algorithms using pseudorange single point positioning(SPP).The results show that the Kmeans^(++) algorithm has the best classification accuracy.The accuracy of positioning in three directions of E,N and U is 2.56 m,3.25 m,and 9.73 m respectively;compared with not using the Kmeans^(++) algorithm,the positioning accuracy is improved by 57.86%,47.64%,and 60.98%.To further verify the performance of the algorithm,the accuracy of the Kmeans^(++) algorithm is compared with the signal-to-noise ratio and height angle threshold algorithm.The results show that the plane and three-dimensional positioning accuracy of the Kmeans^(++) algorithm is significantly improved by 24.87%,39.07%(signal-to-noise ratio algorithm)and 41.36%,59.91%(height angle threshold algorithm),respectively.
作者 李飞翔 赵乐文 唐歌实 LI Feixiang;ZHAO Lewen;TANG Geshi(School of Remote Sensing and Geomatics Engineering,Nanjing University of Information Science and Technology,219 Ningliu Road,Nanjing 210044,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2022年第8期852-856,共5页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(42104018) 江苏省高校自然科学研究项目(20KJB170008) 南京信息工程大学人才启动基金(2019r081)。
关键词 非监督分类算法 复杂环境 GNSS定位 多路径效应 非视线信号 unsupervised classification algorithm complex environment GNSS positioning multipath effect NLOS
  • 相关文献

参考文献4

二级参考文献13

  • 1黄立人,高砚龙,任立生.关于NEU(ENU)坐标系统[J].大地测量与地球动力学,2006,26(1):97-99. 被引量:43
  • 2[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 3[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 4[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 5[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
  • 6WANG J. , Satirapod C.. Rizos C stochastic assessment of the GPS measurements for precise positioning [J].Journal of Geodesy, 2002,76 : 95-104.
  • 7HAN S. Quality control issues relating to instantaneous ambiguity resolution for real-time GPS kinematics positioning [J].Journal of Geodesy, 1997, 71:351-361.
  • 8Brunner F. K. , Hartinger H. , Troyer L.. GPS signal diffraction modeling: The stochastic SIGMA-D model [J].Journal of Geodesy, 1999,73 : 259-267.
  • 9国家质量技术监督局.GB/T18314-2001全球卫星定位系统(GPS)测量规范[S].北京:中国标准出版社,2001.
  • 10阮仁桂,郝金明,吕志伟,秦士琨,刘勇.GPS双频精密单点定位软件及其精度分析[J].测绘科学技术学报,2009,26(4):276-279. 被引量:11

共引文献112

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部