期刊文献+

基于神经网络的吕梁市光伏电站发电量预测研究 被引量:1

Power Generation Forecasting of Photovoltaic Power Station in Lvliang City Based on Neural Network
下载PDF
导出
摘要 依据吕梁市光伏电站的历史发电数据和历史气象数据,使用BP神经网络建立了光伏电站发电量预测模型。模型一的输入变量为天气类型、最高温度、最低温度和前一日的发电量,模型二的输入变量为天气类型、最高温度、最低温度和相似日的发电量。使用预测模型预测了2021年5月10日至16日连续7天的发电量。其中模型一的平均绝对百分误差为28.89%,模型二的平均绝对百分误差为16.39%。通过对比发现,使用相似日发电量作为神经网络模型的输入变量可显著提高预测精度。 Based on the historical power generation data and historical meteorological data of Lvliang photovoltaic power station,the power generation prediction model of photovoltaic power station is established by using BP neural network.The input variables of model 1 are weather type,maximum temperature,minimum temperature and power generation of the previous day,and the input variables of model 2 are weather type,maximum temperature,minimum temperature and power generation of similar days.The prediction model was used to predict the power generation for 7 consecutive days from May 10 to 16,2021.The average absolute percentage error of model 1 is 28.89%,and the average absolute percentage error of model 2 is 16.39%.Through comparison,it is found that using similar daily power generation as the input variable of neural network model can significantly improve the prediction accuracy.
作者 赵红梅 杨洁 贾景伟 ZHAO Hongmei;YANG Jie;JIA Jingwei(Lvliang Rural Revitalization Bureau,Lvliang 033000,Shanxi,China;Department of Physics,Lvliang University,Lvliang 033000,Shanxi,China)
出处 《能源与节能》 2022年第7期21-23,103,共4页 Energy and Energy Conservation
基金 吕梁市重点研发计划(高新技术领域)项目(2020GXZDYF21)。
关键词 光伏电站 发电量预测 神经网络 吕梁市 photovoltaic power station power generation forecasting neural network Lvliang City
  • 相关文献

参考文献7

二级参考文献79

  • 1吴理博,赵争鸣,刘建政,王健,刘树.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报,2006,26(6):73-77. 被引量:160
  • 2Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 3Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 4Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 5Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 6Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 7Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 8Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.
  • 9Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1):8-14.
  • 10Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for Solar radiation data from sunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.

共引文献343

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部