期刊文献+

改进YOLOv1的视频图像运动目标检测 被引量:3

Moving target detection in video images based on improved YOLOv1 network
下载PDF
导出
摘要 针对视频图像中运动目标位置和大小变化频繁的特点,通过改进网络结构和训练过程,搭建了基于YOLOv1的神经网络框架。该框架采用ResNet50进行特征提取,增加卷积层和全连接层优化对不同尺度特征信息的传递,通过Sigmoid层和BN层在稳定输出结果的同时,加快训练速度。PASCAL VOC2007数据集和实景视频数据的实验表明,相比原始YOLOv1,本文方法的FPS和mAP分别提高了4.44%和4.57%,满足视频图像运动目标检测的实时性和精度要求。 By improving the network structure and training process,a neural network based on YOLOv1 framework is present to deal with the frequent position and size changes of moving targets in video images. Particularly,ResNet50 is utilized for feature extraction,convolution layer and full connection layer are appended to optimize the transmission of feature information at different scales,and Sigmoid and BN layer are employed to speed up the training speed while stabilizing the output results. Experimental results of PASCAL VOC2007 and self-captured video dataset show that the FPS and mAP of the method proposed in this paper are improved by 4.44% and 4.57% respectively compared with the original YOLOv1, which can meet the requirements of real-time and accuracy of moving target detection in video im ages.
作者 梅健强 黄月草 MEI Jianqiang;HUANG Yuecao(School of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China;School of Sciences,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《天津职业技术师范大学学报》 2022年第2期29-35,共7页 Journal of Tianjin University of Technology and Education
基金 教育部协同育人项目(202102186003) 天津市教委科研计划项目(JWK1605) 校人才引进启动项目(KYQD16007).
关键词 视频图像 目标检测 深度学习 video image object detection deep learning
  • 相关文献

参考文献4

二级参考文献212

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献467

同被引文献42

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部