期刊文献+

基于多通道残差深度网络的往复压缩机故障诊断模型研究 被引量:1

Research on Fault Diagnosis Model of Reciprocating CompressorBased on Multi-Channel Residual Depth Network
下载PDF
导出
摘要 往复压缩机故障机理复杂,状态监测信号类型较多,故障诊断难度大。提出一种基于多通道残差网络的往复压缩机故障诊断模型,包含多个独立的输入层通道,分别处理不同传感器监测数据;经过多次卷积、池化、批归一化、激活和展平操作,将多源传感器监测数据的深层抽象特征在全连接层进行融合,实现不同参数之间关联信息提取。应用实验台与实际往复压缩机故障数据进行测试验证,诊断模型取得了良好的应用效果。 The fault mechanism of reciprocating compressor is complex, there are many types of condition monitoring signals, and the fault diagnosis is difficult.A fault diagnosis model of reciprocating compressor based on multi-channel residual network is proposed, which includes multiple independent input layer channels, simultaneous interpreting different sensor monitoring data.After multiple convolutions, pooling, batch normalization, activation and flattening operations, the deep abstract features of multi-source sensor monitoring data are fused in the full connection layer to extract the correlation information between different parameters.The fault data intest and actual of reciprocating compressor is tested and verified, and the new diagnosis model has achieved good application results.
作者 原栋文 王永超 刘浩 易顶珍 宋志军 毕文阳 YUAN Dong-wen;WANG Yong-chao;LIU Hao;YI Ding-zhen;SONG Zhi-jun;BI Wen-yang(Sinopec Group Jinling Petrochemical Co.,Ltd.,Nanjing 210033,China;Beijing Bohua Xinzhi Technology Co.,Ltd.,Beijing 100029,China)
出处 《压缩机技术》 2022年第3期20-24,共5页 Compressor Technology
基金 国家自然科学基金资助项目(52176029) 山东省自然科学基金资助项目(ZR2019MEE079) 压缩机技术国家重点实验室(压缩机技术安徽省实验室)开放基金项目(SKL-YSJ202006)。
关键词 多通道残差网络 往复压缩机 故障诊断 多源传感器 multichannel residual network reciprocating compressor fault diagnosis multi-source sensors
  • 相关文献

参考文献8

二级参考文献52

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:85
  • 2刘银萍,尹明,陈平,曾奕秋.基于深度学习的疟疾检测[J].实验技术与管理,2020,37(2):67-71. 被引量:2
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献421

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部