期刊文献+

基于深度学习的电商用户评论情感极性分析

Analysis on Affective Polarity of E-commerce Users’Comments Based on Deep LearningWU Shu-fan
下载PDF
导出
摘要 为对电商平台中的用户评论进行情感极性分析,先对这些电商评论文本进行预处理,再利用经过训练优化了参数的BERTCNN模型进行分析。结果表明,BERTCNN模型虽然用时较长,但准确率、召回率和F都优于其他模型,而且BERTCNN模型训练过程稳定,收敛后损失较小,因此,在情感分析中BERTCNN模型效果最好。 In order to analyze the emotional polarity of user reviews in e-commerce platform,these e-commerce comment texts are preprocessed,and then analyzed by using BERT-CNN model,which has been trained and optimized,but the accuracy,recall and F of BERT-CNN model are better than other models,and the training process of BERT-CNN model is stable with less loss after convergence.
作者 吴淑凡 WU Shu-fan(School of Information Management,Minnan University of Science and Technology,Quanzhou 362700,China)
出处 《滨州学院学报》 2022年第4期87-91,共5页 Journal of Binzhou University
基金 闽南理工学院项目“智能工业互联网与大数据研究中心”。
关键词 深度学习 卷积神经网络 评论文本 情感极性分析 deep learning convolutional neural network comment text affective polarity analysis
  • 相关文献

参考文献7

二级参考文献77

  • 1Double Click. Search before the Purchase - Understanding BuyerSearch Activity as it Builds to Online Purchase [ R] . 2005 (http: //www ? doubleclick com/ insi^it/pdfs/searchpurchase_0502. pdf).
  • 2Pang B,Lee L, Vaithyanathan S Tliumbs up? Sentiment classificationusing machine learning techniques [ C] // Proceedings of the 2002Conference on En^irical Methods in Natural Language Processing(EMNLP), Morristown NJ USA, Association for Computational Lin-guistics, 2002 : 79-86.
  • 3Vermeulen I E, Seegers D. Tried and tested: The impact of onlinehotel reviews on consumer consideration [ J ]. Tourism Management,2009 , 30 (1): 123- 127.
  • 4Ye Q, Law R, Gu B. The inpact of online user reviews on hotel roomsales [ J ]. Intemational Journal of Hospitality Management, 2009,28 (1): 180- 182.
  • 5Rhee H T, Yang SB. How does hotel attribute in^x>rtance vary amongdifferent travelers? An exploratory case study based on a conjoint anal-ysis [J]. Electronic Marfcets, 2014: 1-16.
  • 6Wall^e B C, Paul M J, Sarkar U, et al. A lai^e - scale quantitativeanalysis of latent factors and sentiment in online doctor review [ J ].Journal of the American Medical Informatics Association, 2014, 21(6): 1098-1103.
  • 7Deng X,Chen R. Sentiment Analysis Based Online Restaurants FakeReviews Hype Detection [M] //Web Technologies and Applications.Springer International Publishing, 2014: 1-10.
  • 8Liu Y, Yu X,An A, et al. Ridir^ the tide of s^itiment change:sentim^it analysis with evolving online reviews [ J ]. World WideWeb, 2013, 16 (4): 477 - 496.
  • 9Xueke X,Xueqi C, Son^x> T, et al. Aspect - level pinion miningof online customer review [ J]. CommunicaticHis, China, 2013,10(3): 25-41.
  • 10Xian^iua F,Guo L, Yanyan G, et al. Multi - aspect sentimentanalysis for Chinese online social reviews based on 邮 ic modeling andHowNet lexicon [J]. Knowledge - Based Systmis, 2013,37: 186-195.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部