摘要
为对电商平台中的用户评论进行情感极性分析,先对这些电商评论文本进行预处理,再利用经过训练优化了参数的BERTCNN模型进行分析。结果表明,BERTCNN模型虽然用时较长,但准确率、召回率和F都优于其他模型,而且BERTCNN模型训练过程稳定,收敛后损失较小,因此,在情感分析中BERTCNN模型效果最好。
In order to analyze the emotional polarity of user reviews in e-commerce platform,these e-commerce comment texts are preprocessed,and then analyzed by using BERT-CNN model,which has been trained and optimized,but the accuracy,recall and F of BERT-CNN model are better than other models,and the training process of BERT-CNN model is stable with less loss after convergence.
作者
吴淑凡
WU Shu-fan(School of Information Management,Minnan University of Science and Technology,Quanzhou 362700,China)
出处
《滨州学院学报》
2022年第4期87-91,共5页
Journal of Binzhou University
基金
闽南理工学院项目“智能工业互联网与大数据研究中心”。
关键词
深度学习
卷积神经网络
评论文本
情感极性分析
deep learning
convolutional neural network
comment text
affective polarity analysis