期刊文献+

基于改进Stanley算法的无人车路径跟踪融合算法研究 被引量:13

Research on Fusion Algorithm of Unmanned Vehicle Path Tracking Based on Improved Stanley Algorithm
下载PDF
导出
摘要 针对斯坦利(Stanley)跟踪算法无法更好地同时满足无人驾驶路径跟踪的精确度和平滑性要求的问题,根据车辆的航向角、横向偏差、车速等特性,基于合适的预瞄距离,采用纯跟踪(Pure Pursuit)算法对Stanley算法中车轮转角的计算方式进行改进,提出一种新的融合算法,实时计算车辆在当前车速下合适的车轮转角。仿真结果表明,相比于Stanley算法,所提出的融合算法在不失跟踪精确度的情况下,不同车速下跟踪平滑性均有较大提升。实车试验结果表明,在20 km/h车速下,所提出融合算法的跟踪路径比原Stanley算法的跟踪路径有更好的精确度和平滑性。 For the problem that Stanley tracking algorithm cannot better meet the accuracy and smoothness requirements of unmanned driving path tracking simultaneously,this paper used pure pursuit algorithm based on the appropriate preview distance,to improve the calculation method of wheel angle in Stanley algorithm according to the characteristics of vehicle heading angle,lateral deviation and vehicle speed,and proposed a new fusion algorithm,which could real-time calculate the appropriate wheel angle of the vehicle at the current speed.The simulation results show that compared with Stanley algorithm,the proposed fusion algorithm can greatly improve the tracking smoothness under different vehicle speeds without compromising the tracking accuracy.The real vehicle test results show that the tracking path of the proposed fusion algorithm has better accuracy and smoothness than that of the original Stanley algorithm at the speed of 20 km/h.
作者 王鑫 凌铭 饶启鹏 刘畅 翟树龙 Wang Xin;Ling Ming;Rao Qipeng;Liu Chang;Zhai Shulong(Shanghai University of Engineering Science,Shanghai 201620)
出处 《汽车技术》 CSCD 北大核心 2022年第7期25-31,共7页 Automobile Technology
基金 上海市技术标准项目(21DZ2204300)。
关键词 无人驾驶 路径跟踪 纯跟踪算法 斯坦利算法 融合算法 Driverless Path tracking Pure pursuit algorithm Stanley algorithm Fusion algorithm
  • 相关文献

参考文献12

二级参考文献74

  • 1史恩秀,黄玉美,史文浩.轮式移动机器人轨迹跟踪的预测控制[J].机械科学与技术,2004,23(10):1234-1237. 被引量:10
  • 2陈无畏,李碧春,孙海涛,许张红,蒋浩丰.基于视觉导航的AGV模糊-最优控制研究[J].中国机械工程,2006,17(24):2546-2550. 被引量:23
  • 3李力,邹兴龙.海底机器人自动跟踪预定开采路径控制[J].机械工程学报,2007,43(1):152-157. 被引量:9
  • 4杨世勇,徐莉苹,王培进.单级倒立摆的PID控制研究[J].控制工程,2007,14(B05):23-24. 被引量:37
  • 5余志生.汽车理论[M].北京:机械工业出版社,1997,第二版..
  • 6Fang Q, Xie C X. A study on intelligent path following and control for vision-based automated guided vehicle [C]. Proc of the 5th World Congress on Intelligent Control and Automation. Hangzhou, 2004: 4811-4815.
  • 7Zhang Haibo, Yuan Kui, Mei Shuqi, et al. Visual navigation of an automated guided vehicle based on path reeognition[C]. Proc of the 3rd Int Conf on Maehine Learning and Cybernetics. Shanghai, 2004: 3877-3880.
  • 8Jiang Zhongping, Nijmeijer Henk. Tracking control of mobile robots: A case study in backstepping[J]. Automatica, 1997, 33(7) : 1393-1399.
  • 9Wang Taiyu, Tsai Chingehih. Adaptive trajectory traeking eontrol of a wheeled mobile robot via lyapunov teehniques[C]. Proc of the 30th Annual Conf of the IEEE Industrial Electronics Society. Busan, 2004: 389- 394.
  • 10Yang Xinxin, He Kezhong, Guo Muhe, et al. An intelligent predictive control approach to path tracking problem of autonomous mobile robot [C]. Proc of the 1998 IEEE Int Conf on System, Man and Cybernetics. San Diego, 1998: 3301-3306.

共引文献283

同被引文献153

引证文献13

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部