期刊文献+

GEO在轨服务任务建模与强化学习服务序列规划 被引量:1

On-Orbit Service Mission Modeling and Reinforcement Learning Service Sequence Planning in GEO
下载PDF
导出
摘要 面向地球同步轨道卫星故障修复和功能维护的在轨服务系统是我国正在建设发展的重要航天系统工程之一.针对地球同步轨道多目标服务任务规划问题,提出了一种在轨服务任务建模与强化学习服务序列规划方法.推导了航天器轨道动力学模型和霍曼-兰伯特四脉冲交会模型,针对几种典型的地球同步轨道在轨服务任务建立了任务模型,基于强化学习设计了目标卫星服务序列规划方法,并通过数值仿真验证了任务规划方法的有效性.仿真结果表明,该方法能够真实全面地反映服务卫星在目标交会和任务执行过程中的轨道参数改变以及速度增量和时间消耗,规划得到的最优服务序列更具工程实用性. The on-orbit service system for fault repair and function maintenance of geosynchronous satellites is one of the important aerospace projects that are being developed in China.Aiming at the multi-target service mission planning problem in geosynchronous earth orbit,an on-orbit service mission modeling and reinforcement learning service sequence planning method is proposed in this paper.The spacecraft orbit dynamic model and the Hohmann-Lambert four pulses rendezvous model are derived.The mission models are established for several typical on-orbit service missions in geosynchronous earth orbit.A target satellite service sequence planning method is developed based on reinforcement learning.Numerical simulations are carried out to verify the effectiveness of the mission planning method.The results illustrate that the proposed method can comprehensively reflect the change of orbit parameters and the consumption of velocity increment and time of the service satellite in both the target rendezvous process and the mission execution process.The optimal service sequence obtained by planning is more applicable in the engineering.
作者 蔡亚星 王兴龙 朱阅訸 CAI Yaxing;WANG Xinglong;ZHU Yuehe(College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;Institute of Telecommunication and Navigation Satellites,China Academy of Space Technology,Beijing 100094,China)
出处 《空间控制技术与应用》 CSCD 北大核心 2022年第3期39-48,共10页 Aerospace Control and Application
基金 国家自然科学基金资助项目(12102460)。
关键词 地球同步轨道 在轨服务 任务建模 服务序列规划 强化学习 geosynchronous earth orbit on-orbit service mission modeling service sequence planning reinforcement learning
  • 相关文献

参考文献9

二级参考文献79

  • 1崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811. 被引量:163
  • 2Tsiotras P,Nailly A.Comparison between peer-to-peer and single spacecraft refueling strategies for spacecraft in circular orbits[R].AIAA 2005-7115.AIAA.2005.
  • 3Kyle T,Deok-Jin Lee,Glenn Creamer N.Optimal servicing of geosynchronous satellites[R].AIAA 2002-4905.AIAA.2002.
  • 4Busoniu L, Schutter B D, Babuska R. learning and Coordination in Dynamic Multiagent Systems[R], Technical Report 05-019, Delft Center for Systems and Control, Delft University of Technology, The Netherlands, 2005.
  • 5Busoniu L, Schutter B D. A Comprehensive Survey of Multiagent Reinforcement Learning[J]. IEEE Trans. Syst. Man, Cyber., 2008, 38(2) : 156- 172.
  • 6Hu J,Wellman M P.Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm [C]//Proceedings of 15^th Interntional Conference on Machine Learning, Madison, WI, 1998:242 -250.
  • 7Khatib L, Frank J. Interleaved Observation Execution and Rescheduling on Earth Observing Systems[C]//Proceedings of the 13^th International Conference on Automated Planning and Scheduling, Trento, Italy, 2003.
  • 8Schetter T, Campbell M, Surka D. Multiple Agent-based Autonomy for Satellite Constellatioas[J]. Artificial Intelligence, 2003 (145): 147- 180.
  • 9Cesta A, Ocon J, Rasconi R, et al. Simulating On-board Autonomy in a Multi-agent System with Planning and Sdaeduling[C]//Proceedings of 20^th International Conference on Planning and Scheduling, Toronto, Canada, 2010.
  • 10Smith R G, Davis R. Frameworks for Cooperation in Distributed Problem Solving [ J ]. IEEE Trans. On Systems, Man, and Cybernetics, 1981, 11 (1): 61-70.

共引文献172

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部