期刊文献+

冷轧镀锌线带钢表面质量检测系统的设计与应用 被引量:1

Design and Application of Strip Surface Quality Inspection System for Cold Rolling Galvanizing Line
下载PDF
导出
摘要 冷轧镀锌线带钢表面质量检测系统广泛应用于家电板、汽车板的制造质量检测领域。系统的主要技术包括图像处理、数据处理、缺陷识别、智能分类等。目前,国内某钢厂镀锌线表面质量检测系统运行稳定,检测精度高,分类准确率高达95%,能够满足不同表面的检测需求。 The surface quality inspecting system of cold-rolled galvanized steel strip is widely applied to the manufacturing quality inspecting field of household appliance plate and automobile steel plate. The main technologies of the system include image processing, data processing,defect recognition, intelligent classification and so on. At present, the surface quality inspection system of Shougang Jingtang galvanizing line,with high detection accuracy and classification accuracy of 95%, which can meet the detection needs of different cold rolling galvanizing line surfaces.
作者 王智燕 张阳阳 Wang Zhiyan;Zhang Yangyang(Cold Metal Dept.,Shougang Jingtang United Iron and Steel Company,Tangshan Hebei 063210)
出处 《山西冶金》 CAS 2022年第3期247-249,共3页 Shanxi Metallurgy
关键词 带钢表面质量检测 图像处理 缺陷识别 智能分类 strip surface quality inspection image processing defect identification intelligent classification
  • 相关文献

参考文献3

二级参考文献12

  • 1胡亮,段发阶,丁克勤,叶声华.基于线阵CCD钢板表面缺陷在线检测系统的研究[J].计量学报,2005,26(3):200-203. 被引量:32
  • 2罗志勇,刘栋玉,江涛,王斌.新型冷轧带钢表面缺陷在线检测系统[J].华中理工大学学报,1996,24(1):75-78. 被引量:18
  • 3[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216
  • 4[3]Badger J C, Enright Sean T. Automated surface inspection system. Iron and Steel Engineer, 1996 (3): 48~51
  • 5[4]Parsytech Computer GmbH. Software controlled on-line surface inspection. Steel Times International, 1998(3): 30~35
  • 6[5]Karayiannis N B. Accelerating the training of feed forward Neural Networks using generalized hebbian rules for inintializing the internal representation. IEEE Transactions on Neural Networks, 1996, (7)2: 419~426
  • 7[6]Sking J, Jorg R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. on Neural Networks, 1992, 3(5): 714~723
  • 8[7]Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. In: Anon. ed. METR 95-06. Tokyo: Dept. of Mathematical Engineering and Information, Physics, Univ. of Tokyo, 1995.
  • 9John C Badger, Scan T Enright. Automated surface inspection system[J]. Iron and Steel Engineer, 1996,73(3) :48--51.
  • 10Rautaruukki New Technology Corp. Defect classification in surface inspection of strip steel[J]. Steel Times International, 1992,16 (5) :214--216.

共引文献64

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部