期刊文献+

基于ARIMA-LSTM的货运量组合预测方法研究 被引量:4

Research on combined forecasting method of freight volume based on ARIMA-LSTM
下载PDF
导出
摘要 针对仅考虑单一线性或非线性的货运量预测方法的不足,基于ARIMA和LSTM循环神经网络预测模型,提出ARIMA-LSTM 4种组合预测模型,实现综合考虑线性与非线性特征的货运量预测。研究结果表明:任意一种ARIMA-LSTM的组合模型的货运量预测精度均优于单一模型的,由误差倒数确定权重系数的并联组合模型预测精度最优,该模型相比于ARIMA,均方根误差降低40.66%,平均绝对误差降低29.76%,平均绝对百分比误差降低51.45%;相比于LSTM,均方根误差降低13.67%,平均绝对误差降低10.75%,平均绝对百分比误差降低36.32%,该研究可为货运量预测提供有效依据。 In view of the shortage of the existing freight volume forecasting method that can only consider the single linear or nonlinear characteristic.Four combined forecasting models were proposed based on ARIMA-LSTM.the freight volume was forecasted considering the linear and nonlinear characteristic.The results show that prediction accuracy of freight volume resulting from any kind of ARIMA-LSTM combined forecasting model is better that from single model.And error reciprocal to determine the weight coefficient of parallel combination model is optimal.Compared with the ARIMA,the root mean square error,mean absolute error,the mean absolute percentage error reduces 40.66%,29.76%and 51.45%,respectively.Compared with the LSTM,the value is the 13.67%,10.75%and36.32%,respectively.This study can provide an effective basis for freight volume forecast.
作者 杨艳 黄晴 龙思 潘自翔 欧阳瑞祥 YANG Yan;HUANG Qing;LONG Si;PAN Zixiang;OUYANG Ruixiang(School of Traffic and Transportation Engineering,Changsha University of Science and Technology,Changsha 410114,China)
出处 《交通科学与工程》 2022年第2期102-108,共7页 Journal of Transport Science and Engineering
基金 湖南省自然科学基金资助项目(2019JJ40306) 长沙理工大学道路灾变防治及交通安全教育部工程研究中心开放基金资助项目(kfj180401)。
关键词 货运量预测 ARIMA LSTM循环神经网络 组合预测模型 the freight volume prediction ARIMA LSTM recurrent neural network combined prediction model
  • 相关文献

参考文献6

二级参考文献39

共引文献62

同被引文献45

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部