期刊文献+

曲靖非相干散射雷达电离层E-F谷区电子密度日间变化特征初步分析 被引量:1

Preliminary analysis of daytime electron density in the ionospheric E-F valley based on the Qujing incoherent scatter radar observations
下载PDF
导出
摘要 电离层E-F谷区是电离层探测和研究的薄弱环节之一.文中利用曲靖非相干散射雷达日间120~200 km的电子密度观测数据,初步分析了曲靖地区电离层E-F谷区的变化特征.发现E-F谷区结构依赖于地方时与季节,相对于正午存在对称性,同时表现为两种形态:一种在120~160 km存在明显谷区结构,谷底位于134~144 km;另一种的谷区很宽,谷底位于约130 m,在120~150 km电子密度随高度缓慢变化,160 km以上电子密度快速单调增加.一次耀斑爆发后129 km以下电子密度迅速增加,D层电子密度突然增强,而134 km以上变化不明显,可能与X射线增强有关.一次磁暴期间139~158 km电子密度变化不明显,177~196 km的电子密度出现了增强现象,可能与氧原子含量增加有关. The ionospheric E-F valley is difficult to be measured due to its low ionisation. This paper presents the preliminary analysis of daytime electron density profiles in the E-F valley between 120 and 200 km measured by the Qujing incoherent scatter radar. These electron density profiles in the E-F valley depend greatly on the local time and season. There are two kinds of typical E-F valley profiles, of which one has the obvious valley structure in 120-160 km with the altitude of the minimal electron density 134-144 km and the other has a wider valley with a smooth profile between 120 and 150 km and monotonically increasing above 160 km, the valley is located at about 130 km. The electron density in 120-130 km shows the obvious enhancement after the solar flare burst below the altitude of 129 km and sudden enhancement in the D region, and no obvious variations above 134 km,which may be related to the solar Xray fulx enhancement. The electron density in 139-158 km shows no obvious variations and some enhancements in177-196 km in the geomagnetic storm event, which may be related to the oxygeon content enhancement.
作者 丁宗华 代连东 杨嵩 苗建苏 吴健 DING Zonghua;DAI Liandong;YANG Song;MIAO Jiansu;WU Jian(National Key Laboratory of Electromagnetic Environment,China Research Institute of Radiowave Propagation,Qingdao 266107,China;Kunming Electro-magnetic Environment National Observation and Research Station,Qujing 655500,China)
出处 《电波科学学报》 CSCD 北大核心 2022年第3期357-363,共7页 Chinese Journal of Radio Science
基金 国家自然科学基金(61871352)。
关键词 非相干散射雷达 电离层 电子密度 谷区 耀斑 磁暴 incoherent scatter radar ionosphere electron density valley solar flare geomagnetic storm
  • 相关文献

参考文献4

二级参考文献27

  • 1Bauer P, Waldteufel P, Vialle C. 1974. The French quadristatic incoherent scatter facility. Radio Science, 9(2) : 77-83.
  • 2Ding F, Wan W X, Xu G R, et al. 2011, Climatology of medium- scale traveling ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res. , 116 (A9) : A09327, doi: 10. 1029/2011JA016545.
  • 3Esa T. 2009, EISCAT 3D: our windows to Geospaee environment. EISCAT Scientific Association, Kiruna, Sweden, 1(1): 11-19. (http://www. eiseat3D, se).
  • 4Evans J V. 1969. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE, 57(4) : 496-530.
  • 5Fukao S, Hashiguchi H, Yamamoto M, et al. 2003, Equatorial atmpshpere radar (EAR) : system description and first results. Radio Sci. , 38(3) : 1053-1069.
  • 6Ioannidis G, Farley D T. 1972. Incoherent scatter observations at Arecibo using compressed pulses. Radio Sci. , 7(7) : 763-766.
  • 7Kato S, Ogawa T, Tsuda T, et al. 1984. The middle and upper atmosphere radar: First results using a partial system. Radio Sci. , 19(6): 1475-1484.
  • 8Kelly J D, Heinselman C J, Vickrey J F, et al. 1995. The Sondrestrom radar and accompanying ground-based instrumentation. SpaceSci. Rev., 71(1-4): 797-813.
  • 9Liu L B, Chen Y D, Le H J, et al. 2013, A case study of post- midnight enhancement in F-layer electron density over Sanya of China. J. Geophys. Res.: Space Phys. , 118(7): 4640-4648.
  • 10Wannberg G, Wolf I, Vanhainen L G, et al. 1997. The EISCAT Svalbard radar: A case study in modernincoherent scatter radar system design. Radio Sci. , 32(6) : 2283-2307.

共引文献21

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部