摘要
大数据处理平台为更好地分析海量数据提供了一个新思路。笔者在深入了解网络用户行为理论的基础上,分析网络用户的行为特征,并针对大数据时代的应用场景,在传统数据挖掘算法的基础上采用流处理大数据平台Flink对海量用户行为数据进行分析,提高算法在应对巨大数据量时的处理能力,让产品的运行者更加详细、清楚地了解用户的行为习惯,进一步寻求用户基本操作行为中存在的规律。
Big data processing platforms provide a new way of thinking and approach to better analyzing massive amounts of data.Based on an in-depth understanding of Web user behavior theory,this paper studies and understands the behavior characteristics of network users,and summarizes the characteristics of Internet user behavior.For the application scenario in the era of big data,a stream processing big data platform Flink is used to analyze massive user behavior data on the basis of traditional data mining algorithms to improve the processing capacity of the algorithm when the amount of data is huge,so that the product runners can understand the behavior habits of users in more detail and clearly,and can further seek for some patterns that exist in the basic operation behavior of users.
作者
吴彩
WU Cai(College of Computer Science and Engineering,Anhui University of Science&Technology,Huainan Anhui 232001,China)
出处
《信息与电脑》
2022年第9期4-7,共4页
Information & Computer