摘要
急性心肌梗死(AMI)的院内病死率高,严重威胁患者生命健康。目前许多国家和地区已经建立了多种用于预测AMI患者院内死亡风险的客观评估模型,在对不同危险分层的患者拟定治疗方案时提供了重要的决策辅助支持。随着人工智能的兴起,许多新的建模方法也在传统建模的基础上显示出一定的优势。本文将对常用的以及新近构建的AMI院内死亡风险预测模型进行系统介绍,以期为医护人员在临床中应用模型辅助决策提供帮助,并为将来建立更为安全有效的风险预测模型提供参考。
The incidence of in-hospital death in acute myocardial infarction(AMI)is high,which seriously threatens the life and health of patients.At present,many countries and regions have established a variety of objective assessment models for predicting the in-hospital mortality of patients with AMI,providing important decision-making support for patients with different risk levels when formulating treatment plans.With the rise of artificial intelligence,many new modeling methods also show certain advantages over the traditional models.This article systematically introduces the commonly used and newly constructed risk prediction models for in-hospital mortality of AMI,in order to provide help for medical staff to assist decision-making in clinical practice,and provide reference for the establishment of a safe and more effective risk prediction model in the future.
作者
伍朝玉
郑雯
桑文涛
魏述星
徐峰
Wu Chaoyu;Zheng Wen;Sang Wentao;Wei Shuxing;Xu Feng(Department of Emergency,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China;Clinical School of Medicine,Shandong University Qilu Medical College,Jinan 250012,Shandong,China)
出处
《中华危重病急救医学》
CAS
CSCD
北大核心
2022年第5期550-555,共6页
Chinese Critical Care Medicine
基金
国家自然科学基金(81873950,82072144,81772036)
国家自然科学基金重点项目(82030059)
国家科技基础资源调查专项(2018FY100600,2018FY100602)
国家重点研发计划(2020YFC1512700)
泰山学者攀登计划专家建设工程专项(tspd20181220)
山东大学青年交叉科学创新群体(2020QNQT004)。
关键词
急性心肌梗死
院内死亡
风险模型
机器学习
Acute myocardial infarction
In-hospital mortality
Risk model
Machine learning