期刊文献+

圆柱锂电池端面凹坑缺陷检测方法研究 被引量:6

A research on the detection method of pit on the cylindrical lithium battery end surface
下载PDF
导出
摘要 端面凹坑是圆柱锂电池缺陷检测的重要指标之一。因为明暗对比度小的浅凹坑极易受金属表面上随机出现的亮点暗斑等强噪声的干扰,造成浅凹坑自动检测十分困难。为此,提出了一种解决方案:首先针对在单一光源角度下难以获取清晰的浅凹坑图像问题,采集6张凹坑在不同光源角度下的图像;其次采用时域平均和剔除异常值方法对6张图像进行融合得到基准面图像,并采用基于滑动窗口和奈奎斯特采样定理的空间滤波方法,减弱了信息强度较强的干扰噪声,再根据误差分析理论,提取灰度分布曲线的平均偏差;然后根据凹坑在灰度分布曲线中的形态,提取凹凸曲线段峰谷差和宽度比;最后采用BP神经网络方法建立检测模型来实现凹坑检测。对现场采集到的样本进行了测试,算法的正确检测率为100%。 The end pit is one of the important indexes for defect detection of the cylindrical lithium battery.It is very difficult to detect shallow pits automatically because the shallow pits with small contrast are easily interfered by strong noise such as bright spots and dark spots appearing randomly on metal surface.Therefore,a solution is proposed in this article.Firstly,to obtain a clear shallow pit image under a single light source angle,the six images of pit under different light source angles are collected.Secondly,the temporal averaging and outlier elimination method are used to fuse six images to obtain the datum image,and the spatial filtering method based on sliding window and Nyquist sampling theorem is utilized to weaken the interference noise with strong information intensity.Then,the average deviation is calculated according to the error analysis theory.According to the shape of pits in the gray distribution curve,the peak-to-valley difference and width ratio of concave-convex curve segment are extracted.Finally,the BP neural network is used to formulate a detection model to realize pit detection.The samples collected on site are tested,and the correct detection rate of the algorithm is 100%.
作者 郭绍陶 苑玮琦 Guo Shaotao;Yuan Weiqi(Computer Vision Group,Shenyang University of Technology,Shenyang 110870,China;Key Laboratory of Machine Vision,Shenyang 110870,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期230-239,共10页 Chinese Journal of Scientific Instrument
关键词 基准面图像 凹凸曲线段 BP神经网络 圆柱锂电池 凹坑 datum image concave-convex curve segment BP neural network cylindrical lithium battery pit
  • 相关文献

参考文献6

二级参考文献78

  • 1黄劼,周肇飞.基于曲线拟合的非对称采样精度CCD图像中心检测算法[J].光电子.激光,2004,15(6):691-694. 被引量:6
  • 2戚大伟,牟洪波.人工神经网络在木材缺陷检测中的应用[J].森林工程,2006,22(1):21-23. 被引量:19
  • 3童莉,平西建,李磊.一种基于自适应模糊线段的离散曲率估计[J].计算机辅助设计与图形学学报,2007,19(5):589-594. 被引量:5
  • 4李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 5WEI Wei,SUN Chang-ku, ZHANG Xiao-dong, et al. Study on non-contact measurement method based on line-structured laser for vehicle wheel alignment parameters [J].光电子·激光,2004,15(12):1479-1482. (in Chinese)
  • 6Ministry of Railway of People's Republic of China. Maintenance Regulation of Railway [M]. Biejing: Chinese Railway Publishing House, 2001. (in Chinese)
  • 7WEI Zhen-zhong. Flexible on-line 3-D coordinates measurement system based on machine vision [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2003.(in Chinese)
  • 8Craig M Shakarji. Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards and Technology, 1998,103(6):633-641.
  • 9Gander W, Golub G H, Strebel R. Least-square fitting of circles and ellipses[R]. BIT, 1994,43: 558-578.
  • 10Andrew Fitsgibbon,Narizio Pilu, Robert B Fisher. Direct least square fitting of ellipse [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(5):476-480.

共引文献253

同被引文献71

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部