摘要
Bismuth-rich Bi_(5)O_(7)Br is a promising photocatalyst for pollutant removal owing to its stability and appropriate band structure in comparison with bismuth oxybromide.However,bulk-phase Bi_(5)O_(7)Br suffers from poor light absorption and high charge recombination rates resulting in poor activity.Elemental doping is a powerful strategy to enhance photocatalytic activity.In this study,we prepared a series of Br autodoped ultrathin Bi_(5)O_(7)Br nanotubes and explored the effect of Br doping on photocatalytic NO removal.The optimal doping content was determined via a photocatalytic NO removal experiment,which revealed the optimal ratio of Bi and Br was approximately 3:1.In situ diffuse reflectance infrared Fourier transform spectroscopy(In situ DRIFT)and density functional theory(DFT)studies revealed that NO removal mechanism catalyzed by Br doped Bi_(5)O_(7)Br.Our work presents a new strategy for the enhancement of photocatalytic pollutant degradation by bismuth oxyhalide photocatalysts.
基金
the National Key Research and Development Program of China(No.2019YFC0214404)
Science and Technology Major Projects in Sichuan Province(No.2019KJT0067–2018SZDZX0019)
Science and Technology Major Projects in Chengdu(No.2018-ZM01–00044-SN)。