期刊文献+

On Covering Number of Groups with Trivial Fitting Subgroup

原文传递
导出
摘要 Let G be a finite group and S be a subset of Irr(G).If for every prime divisor p of|G|there is a characterχin S such that p dividesχ(1),S is called a covering set of G.The covering number of G,denoted by cn(G),is defined as the minimal number of Card(S),where S is a covering set of G and Card(S)is the cardinality of set S.In this paper,we prove that if G is a finite group with F(G)=1,then the covering number cn(G)≤3.Especially,if PSL2(q)or J1 is not involved in G,then cn(G)≤2.
作者 Yang LIU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第7期1277-1284,共8页 数学学报(英文版)
基金 Supported by the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2020KJ010)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部