摘要
Shock responses of Mg-Al-Zn alloy are investigated by the molecular dynamics(MD)method.The wave propagation,plastic deformation behavior and failure mechanism along the[0001]and[1010]orientations are analyzed.For both orientations,simulation results show that the shock wave has an obvious double-wave structure(plastic-elastic)under a piston velocity of 1200 m/s.A higher Hugoniot elastic limit(HEL)is observed for[0001]-oriented shock.When the shock pressure is along the[1010]direction,the distance between plastic and elastic waves is closer,and higher dislocation density and more twins are observed.Moreover,the spall strength for[1010]-oriented shock is predicted to be higher.In addition,the wave interactions,HEL and spall strength predicted for Mg-Al-Zn alloy are compared with the experimental results and MD simulation results of Mg single crystal in the literature.It is concluded that the shock performance of Mg-Al-Zn is better than that of Mg single crystal.
基金
This research are funded by the National Natural Science Foundation of China(11402183,51604206 and 51974217)
the Fundamental Research Funds for the Central Universities of China(WUT:2017IA002)
National Defense Science and technology foundation strengthening program.