期刊文献+

On Some Computational Problems in Local Fields

原文传递
导出
摘要 Lattices in Euclidean spaces are important research objects in geometric number theory,and they have important applications in many areas,such as cryptology.The shortest vector problem(SVP)and the closest vector problem(CVP)are two famous computational problems about lattices.In this paper,we consider p-adic lattices in local fields,and define the p-adic analogues of SVP and CVP in local fields.The authors find that,in contrast with lattices in Euclidean spaces,the situation is different and interesting.The SVP in Euclidean spaces corresponds to the Longest Vector Problem(LVP)in local fields.The authors develop relevant algorithms,indicating that these problems are computable.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第3期1191-1200,共10页 系统科学与复杂性学报(英文版)
基金 supported by the National Key Research and Development Project under Grant No.2018YFA0704705。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部