期刊文献+

面向检测的认知雷达低峰均比稳健波形设计

Robust Detection Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization
下载PDF
导出
摘要 现有认知雷达的发射波形和接收机滤波器的设计方法中大都假定目标和杂波先验信息已知,且并未考虑实际发射机的非线性特性。针对该问题,在随机目标冲激响应和信号相关杂波先验信息均不准确的背景下,提出一种稳健的认知雷达低峰均比发射波形和接收机滤波器联合设计算法。该方法根据极小极大法构造信号模型,给出最差SINR下目标和杂波协方差矩阵不确定度的取值;在此基础上,采用半正定松弛(Semi-definite Relaxation,SDR)方法将非凸问题转化为一个凸问题进行求解,并通过循环迭代得到最优的发射波形和接收机滤波器。仿真结果验证所提方法的有效性。 The existing joint design methods of transmitting waveform and receiving filter for Cognitive Radar(CR)radar are all based on the precise previous information about the target and interference,the efficiency of transmitter is not taken into account in practical applications.For these problems,a low Peak-to-Average power Ratio(PAR)robust waveform and receiving filter design algorithm is proposed under the assumption of the random Target Impulse Response(TIR)and signal-dependent interference.So a signal model is constructed according to the Max-Min method and the value of the uncertainty region about the covariance matrix of TIR and the Clutter Impulse Response(CIR)under the worst-case Signal-to-Interference-And-Noise rate(SINR)is given.Then the Semi-Definite Relaxation(SDR)method is used to transform the nonconvex problem into a convex problem to maximize the worst-case SINR.On this basis,the optimal transmit waveform and receiver filter are obtained by using the cyclic iteration idea.The simulation results show the effectiveness of the proposed the method.
作者 郝天铎 胡松 高伟鑫 李吉民 曹兴龙 王鹏 HAO Tianduo;HU Song;GAO Weixin;LI Jimin;CAO Xinglong;WANG Peng(Unit 93363 of PLA,Shenyang 110000,China;Unit 93175 of PLA,Changchun 130000,China)
机构地区 解放军 解放军
出处 《电子信息对抗技术》 北大核心 2022年第4期70-75,共6页 Electronic Information Warfare Technology
关键词 认知雷达 稳健波形设计 峰均比(PAR) 凸优化 半正定松弛(SDR) cognitive radar robust waveform design Peak-to-Average power Ratio(PAR) convex optimization Semi-Definite Relaxation(SDR)
  • 相关文献

参考文献3

二级参考文献48

  • 1S. Haykin. Cognitive radar: a way of the future [J]. IEEE Signal Processing Magazine, 2006,23(1) : 30-40.
  • 2Yanbo Xue. Cognitive Radar: Theory and Simulations [D]. Mcmaster University,2010.
  • 3Ric A Romero. Matched waveform design and adaptive heamsteering in cognitive radar applications [D].The Uni- versity of Arizona,2010.
  • 4Joseph R. Guerci. Cognitive Radar: The Knowledge-aided Fully Adaptive Approach [M]. Artech House,2010.
  • 5S. Haykin, A. Zia, Y. Xue, and I. Arasaratnam, "Cogni- tive tracking radar," Canada and US Patent US Applica- tion Serial No. 12/588346. Can Application No. 2,682,428, 2009.
  • 6S. Haykin and Y. Xue. "New generation of radar systems enabled with cognition," US Patent US serial 61/331977, 2010.
  • 7HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
  • 8GUERCI J R. Cognitive radar: The knowledge-aided fully adaptive approach[M]. Norwood, MA: Arteeh House, 2010: 13-30.
  • 9HE H, LI J, STOICA P. Waveform design for active sensing systems: A computational approach [M]. Cam- bridge: Cambridge University Press, 2012: 1-14.
  • 10SOLTANALIAN M, TANG B: LI J, et al. Joint design of the receive filter and transmit sequence for active sens- ing[J]. IEEE Signal Processing Letters, 2013, 20 (5) : 423-426.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部